首页> 外文期刊>Advanced Powder Technology: The internation Journal of the Society of Powder Technology, Japan >A modified two-phase mixture model of nanofluid flow and heat transfer in a 3-D curved microtube
【24h】

A modified two-phase mixture model of nanofluid flow and heat transfer in a 3-D curved microtube

机译:在3-D弯曲微管中的纳米流体流动和传热的改进的两相混合物模型

获取原文
获取原文并翻译 | 示例
       

摘要

This study numerically investigated the laminar mixed-convection heat transfer of different water copper nanofluids inside a microtube with curvature angle of 90 degrees using a finite volume method. The Reynolds number of modeling was 10, nanoparticles volume fractions were chosen from 0.0% to 6.0% and Richardson numbers varied from 0.1 to 10. The findings were depicted for dimensionless axial velocity, coefficient of friction and Nusselt number profiles as well as dimensionless temperature contours. The validity of model was excellent compared to former numerical and experimental studies. The results showed that the heat transfer and hydraulics behavior of nanofluids in curved geometries is to some extent different with other geometries and flat surfaces due to presence of buoyancy and centrifugal forces at the same time. Especially, in the regions near and after 45 degrees curvature angle, the behavior of heat transfer and nanofluid flow is unpredictable. In this region, increasing the nanoparticles volume concentration or transition from forced convection regime to free convection state, cause a decrease in Nusselt number and friction factor. That's while for the entrance region of microtube, the results are completely opposite; increasing the Richardson number or nanoparticle concentration enhances the heat transfer as well as friction factor. Also, the velocity profile variations in the vertical and horizontal diameter of microtube is significant in areas of 60 degrees (pi/3) and the heterogeneity of this profile increases by rising Rayleigh number and volume fraction of solid particles. (C) 2016 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
机译:本研究使用有限体积法对曲率角为90度的微管内不同水铜纳米流体的层流混合对流换热进行了数值研究。建模的雷诺数为10,纳米粒子的体积分数从0.0%到6.0%,理查森数从0.1到10不等。结果描述了无因次轴向速度,摩擦系数和Nusselt数曲线以及无因次温度轮廓。与以前的数值和实验研究相比,该模型的有效性非常好。结果表明,由于同时存在浮力和离心力,纳米流体在弯曲几何形状中的传热和水力学行为与其他几何形状和平坦表面在一定程度上有所不同。特别是,在45度曲率角附近和之后的区域中,传热和纳米流体流动的行为是不可预测的。在该区域中,纳米颗粒体积浓度的增加或从强制对流状态到自由对流状态的转变会导致Nusselt数和摩擦系数减小。在微管的入口区域,结果完全相反。增加理查森数或纳米粒子浓度可提高传热以及摩擦系数。同样,在60度(pi / 3)的区域中,微管的垂直和水平直径的速度分布变化显着,并且该分布的不均匀性随瑞利数和固体颗粒体积分数的增加而增加。 (C)2016日本粉末技术学会。由Elsevier B.V.和日本粉末技术学会出版。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号