首页> 外文期刊>International Journal of Computer Vision >SSN: Learning Sparse Switchable Normalization via SparsestMax
【24h】

SSN: Learning Sparse Switchable Normalization via SparsestMax

机译:SSN:通过SPARSESTMAX学习稀疏可切换标准化

获取原文
获取原文并翻译 | 示例
           

摘要

Normalization method deals with parameters training of convolution neural networks (CNNs) in which there are often multiple convolution layers. Despite the fact that layers in CNN are not homogeneous in the role they play at representing a prediction function, existing works often employ identical normalizer in different layers, making performance away from idealism. To tackle this problem and further boost performance, a recently-proposed switchable normalization (SN) provides a new perspective for deep learning: it learns to select different normalizers for different convolution layers of a ConvNet. However, SN uses softmax function to learn importance ratios to combine normalizers, not only leading to redundant computations compared to a single normalizer but also making model less interpretable. This work addresses this issue by presenting sparse switchable normalization (SSN) where the importance ratios are constrained to be sparse. Unlike l(1) and l(0) regularizations that impose difficulties in tuning layer-wise regularization coefficients, we turn this sparse-constrained optimization problem into feed-forward computation by proposing SparsestMax, which is a sparse version of softmax. SSN has several appealing properties. (1) It inherits all benefits from SN such as applicability in various tasks and robustness to a wide range of batch sizes. (2) It is guaranteed to select only one normalizer for each normalization layer, avoiding redundant computations and improving interpretability of normalizer selection. (3) SSN can be transferred to various tasks in an end-to-end manner. Extensive experiments show that SSN outperforms its counterparts on various challenging benchmarks such as ImageNet, COCO, Cityscapes, ADE20K, Kinetics and MegaFace. Models and code are available at https://github.com/switchablenorms/Sparse_SwitchNorm.
机译:归一化方法涉及卷积神经网络(CNNS)的参数培训,其中通常有多个卷积层。尽管CNN中的图层在它们在代表预测函数的角色中不均匀,但现有的工作通常在不同层中采用相同的标准化器,使性能远离理想主义。为了解决这个问题并进一步提高性能,最近建议的可切换归一化(SN)为深度学习提供了一种新的视角:它学会为ConvNet的不同卷积层选择不同的癌症。然而,SN使用SoftMax函数来学习与单个标准化器相比的常规计算相结合的重要性比率,而且不仅导致冗余计算,还可以使模型更少解释。这项工作通过呈现稀疏可切换归一化(SSN)来解决此问题,其中重要性比被约束为稀疏。与L(1)和L(0)对调谐层正则化系数施加困难的L(1)和L(0)正常化,通过提出SparsestMax,将该稀疏约束的优化问题转换为前馈计算,这是SoftMax的稀疏版本。 SSN有几个有吸引力的属性。 (1)它继承了来自SN的所有优势,例如各种任务的适用性和稳健性到各种批量尺寸。 (2)保证只为每个归一化层选择一个标准化器,避免冗余计算和提高标准化器选择的可解释性。 (3)SSN可以以端到端的方式转移到各种任务。广泛的实验表明,SSN优于各种具有挑战性的基准,如想象成,可可,城市景观,ADE20K,动力学和Megaface等各种具有挑战性的基准。 MTTPS://github.com/switchableNorms/sparse_switchnorm提供模型和代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号