首页> 外文期刊>International journal of applied mechanics >Negative capacitance switching in size-modulated Fe3O4 nanoparticles with spontaneous non-stoichiometry: confronting its generalized origin in non-ferroelectric materials
【24h】

Negative capacitance switching in size-modulated Fe3O4 nanoparticles with spontaneous non-stoichiometry: confronting its generalized origin in non-ferroelectric materials

机译:具有自发非化学计量的尺寸调制的Fe3O4纳米粒子的负电容切换:在非铁电材料中面对其广义起源

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Persistent low-frequency negative capacitance (NC) dispersion has been detected in half-metallic polycrystalline magnetite (Fe3O4) nanoparticles with varying sizes from 13 to 236 nm under the application of moderate dc bias. Using the Havriliak-Negami model, 3D Cole-Cole plots were employed to recapitulate the relaxation times (tau) of the associated oscillating dipoles, related shape parameters (alpha, beta) and resistivity for the nanoparticles with different sizes. The universal Debye relaxation (UDR) theory requires a modification to address the shifted quasi-static NC-dispersion plane in materials showing both +ve and -ve capacitances about a transition/switching frequency (f(0)). A consistent blue-shift in 'f(0)' is observed with increasing external dc field and decreasing particle size. Based on this experimental data, a generalized dispersion scheme is proposed to fit the entire positive and negative capacitance regime, including the diverging transition point. In addition, a comprehensive model is discussed using phasor diagrams to differentiate the underlying mechanisms of the continuous transition from -ve to +ve capacitance involving localized charge recombination or time-dependent injection/displacement currents, which has been adequately explored in the scientific literature, and the newly proposed 'capacitive switching' phenomenon. An inherent non-stoichiometry due to iron vacancies [Fe3(1-delta)O4], duly validated from first principles calculations, builds up p-type nature, which consequently promotes more covalent and heavier dipoles and slows the dipolar relaxations; this is incommensurate with Maxwell-Wagner interfacial polarization (MWIP) dynamics. This combinatorial effect is likely responsible for the sluggish response of the associated dipoles and the stabilization of NC.
机译:在应用中等DC偏压的应用下,在半金属多晶磁铁矿(Fe3O4)纳米颗粒中检测到持续的低频负电容(Fe3O4)纳米颗粒。使用HAVRIAK-NegAMI模型,采用3D COLE-COLE图来重新承载具有不同尺寸的纳米颗粒的相关振荡偶极子,相关形状参数(α,β)和电阻率的弛豫时间(Tau)。通用脱义(UDR)理论需要修改以解决围绕过渡/开关频率(F(0))的+ VE和-VE电容的材料中的移位的准静态NC-色散平面。随着外部DC场的增加和粒度降低,观察到“F(0)”中的一致蓝色偏移。基于该实验数据,提出了一种广义分散方案,以适应整个正极和负电容状态,包括发散过渡点。此外,使用量量图讨论了一种综合模型,以区分从-Ve-ve到+ ve电容的连续转变的潜在机制涉及局部电荷重组或时间依赖的注射/位移电流,这在科学文献中已经充分探索,而新提出的“电容式切换”现象。由于铁空缺导致的固有的非化学计量[Fe3(1-Delta)O4],从第一个原则计算中验证,构建了p型性质,从而促进了更多的共价和更重的偶极子并减慢了偶极放松;这与Maxwell-Wagner界面极化(MWIP)动态相关。这种组合效应可能负责相关偶极子的缓慢响应和NC的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号