首页> 外文期刊>International Journal for Numerical Methods in Fluids >A parallel implicit domain decomposition algorithm for the large eddy simulation of incompressible turbulent flows on 3D unstructured meshes
【24h】

A parallel implicit domain decomposition algorithm for the large eddy simulation of incompressible turbulent flows on 3D unstructured meshes

机译:3D非结构化网格上不可压缩湍流流量的大型涡流模拟的平行隐式域分解算法

获取原文
获取原文并翻译 | 示例
           

摘要

We present a parallel fully implicit algorithm for the large eddy simulation (LES) of incompressible turbulent flows on unstructured meshes in three dimensions. The LES governing equations are discretized by a stabilized Galerkin finite element method in space and an implicit second-order backward differentiation scheme in time. To efficiently solve the resulting large nonlinear systems, we present a highly parallel Newton-Krylov-Schwarz algorithm based on domain decomposition techniques. Analytic Jacobian is applied in order to obtain the best achievable performance. Two benchmark problems of lid-driven cavity and flow passing a square cylinder are employed to validate the proposed algorithm. We then apply the algorithm to the LES of turbulent flows passing a full-size high-speed train with realistic geometry and operating conditions. The numerical results show that the algorithm is both accurate and efficient and exhibits a good scalability and parallel efficiency with tens of millions of degrees of freedom on a computer with up to 4096 processors. To understand the numerical behavior of the proposed fully implicit scheme, we study several important issues, including the choices of linear solvers, the overlapping size of the subdomains, and, especially, the accuracy of the Jacobian matrix. The results show that an exact Jacobian is necessary for the efficiency and the robustness of the proposed LES solver.
机译:我们为三维非结构化网格上的不可压缩湍流的大型涡流模拟(LES)的大型隐式隐式算法。通过空间中的稳定的Galerkin有限元方法和隐式二阶向后分化方案被离散化的LES控制方程。为了有效地解决所得到的大型非线性系统,我们介绍了一种基于域分解技术的高度平行的牛顿-Krylov-Schwarz算法。分析雅可比妇女用于获得最佳可实现的性能。使用盖子驱动腔的两个基准问题和通过方形圆筒的流动来验证所提出的算法。然后,我们将算法应用于具有具有逼真的几何和操作条件的全尺寸高速列车的湍流流量。数值结果表明,该算法既准确又高,呈现出良好的可扩展性和平行效率,在高达4096个处理器的计算机上具有数百万个自由度。要了解所提出的完全隐含方案的数值行为,我们研究了几个重要问题,包括线性求解器的选择,子域的重叠尺寸,特别是雅各族矩阵的准确性。结果表明,精确的雅各比是拟议LES求解器的效率和鲁棒性所必需的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号