首页> 外文期刊>International Journal of Applied Engineering Research >Review of Nucleate Pool Boiling Heat Transfer using Refrigerant
【24h】

Review of Nucleate Pool Boiling Heat Transfer using Refrigerant

机译:使用制冷剂审查核心池沸腾热传递

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Nucleate pool boiling has an important place in refrigeration industries. The pool boiling process occurs in the shell side of flooded evaporators and low pressure refrigerants are proposed for industry applications. Enhancement of heat transfer rate depends on different design of heating surface, type of refrigerant and operating parameters like heating surface roughness, surface orientation, operating pressure & temperature. Refrigerant plays a crucial role in the study of nucleate pool boiling heat transfer. Various inferences have been drawn based on the existing parameters by different researchers for enhancement of heat transfer rate. In this paper a detailed study has been carried out using different refrigerants on different surfaces to investigate the optimum value of heat transfer coefficients (HTC). The process could be further investigated using heat transfer enhancement particles such as nanofluids and modification of the heating surface. The surfaces are characterized with contact angle, roughness, film thickness and scanning electron microscopy (SEM) & atomic force microscopy (AFM) etc. The surface modification can be done by nanocoating or polishing the surface area. The addition of lubricant to individual or binary or ternary refrigerants can significantly alter the boiling phenomena for accumulating lubricant at the nanocoating heat transfer surface. Many researchers explained the heat transfer enhancement techniques by the passive methods. Many authors gave empirical correlations (dimensional and nondimensional) for heat transfer coefficient in terms of surface roughness factor, vapour density, liquid density, etc from their experimental results. But there was no theoretical method to get the value of HTC which is a function of bubble density, surface roughness factor, bubble growth, etc.
机译:核心池煮沸在制冷行业中有一个重要的地方。池沸腾的过程发生在溢流蒸发器的壳侧,并且为工业应用提出了低压制冷剂。增强传热速率取决于加热表面的不同设计,制冷剂型和操作参数,如加热表面粗糙度,表面取向,操作压力和温度。制冷剂在核心池沸腾热传递的研究中起着至关重要的作用。通过不同的研究人员基于现有参数来提高传热速率的现有参数来绘制各种推论。在本文中,在不同表面上使用不同的制冷剂进行了详细研究,以研究传热系数(HTC)的最佳值。可以使用诸如纳米流体和加热表面的改性的传热增强颗粒进一步研究该方法。表面的特征在于接触角,粗糙度,膜​​厚度和扫描电子显微镜(SEM)和原子力显微镜(AFM)等。表面改性可以通过纳米陶醉或抛光表面积来完成。向个体或二元或三元制冷剂添加润滑剂可以显着改变用于在纳米陶瓷传热表面处积聚润滑剂的沸腾现象。许多研究人员通过被动方法解释了传热增强技术。许多作者在其实验结果中,对表面粗糙度因子,蒸汽密度,液体密度等方面的传热系数进行了经验相关性(尺寸和非潜能)。但没有理论方法可以获得HTC的价值,这是泡沫密度,表面粗糙度因子,泡沫生长等的函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号