...
首页> 外文期刊>Intermetallics >Effect of hot rolling temperature on microstructure evolution, deformation texture and nanoindentation properties of an intermetallic Ti-43Al-9V-0.2Y alloy
【24h】

Effect of hot rolling temperature on microstructure evolution, deformation texture and nanoindentation properties of an intermetallic Ti-43Al-9V-0.2Y alloy

机译:热轧温度对金属间三相 - 43A-0.2Y合金组合物展开,变形纹理和纳米狭窄性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, microstructure evolution, deformation texture and nanoindentation properties of an intermetallic Ti-43Al-9V-0.2Y (at. %) alloy have been investigated after hot rolled in alpha+beta+gamma (R#1) and beta (R#2) phase field regions. The primary components of sample R#1 are (beta+gamma) mixture and (a2+y) lamellar structure. With the temperature increases to 1250 degrees C, the microstructure of R#2 shows a new characteristic of martensitic alpha(2) and acicular gamma phase. And gamma phase has different precipitation mechanisms by hot rolling at 1200 degrees C and 1250 degrees C. In R#1, gamma phase is obtained through three provenances, which are the precipitating from beta to form (beta+gamma) mixture, the precipitating from a phase to form (alpha(2)+gamma) lamellar structure, and the remnant gamma phase during cooling from alpha-beta+gamma phase field. However, for R#2, gamma phase always nucleates and grows within beta matrix. Meanwhile, microstructure evolution of R#2 is discussed. In addition, the increase in rolling temperature also results in a significant change of the fiber texture. Comparing with gamma phase, beta phase has the stronger texture, which is due to the formation of gamma grain along the K-S orientation relationship in p phase. In R#1 state, beta phase exhibits a typical {121} < 1-11 > texture, while gamma phase shows {031} <-5-13 > and {112} < 1-10 > texture. Aiming at R#2, beta phase displays {010} < 100 > cube texture, and y phase has {-215} < 5-53 > and Goss {110} < 001 > texture. The hardness (H) and reduced elastic modulus (Er) are investigated by nanoindentation. The (beta+gamma) mixture structure in R#2 has the highest H (12.63 GPa), whereas the E-r is related to the microstructure composition.
机译:本文在α+β+γ(R#1)和Beta(R. #2)相位区域区域。样品R#1的主要成分是(β+γ)混合物和(A2 + Y)层状结构。随着温度升高至1250℃,R#2的微观结构显示了马氏体α(2)和针状伽马相的新特征。通过在1200℃和1250℃下热轧,γ相具有不同的沉淀机制。在r#1中,通过三种常量获得γ相,这是从β形成(β+γ)混合物的沉淀,从而沉淀从α-β+γ相域冷却期间形成(α(2)+γ)层状结构的相(α(2)+γ)层状结构和残余γ相。但是,对于R#2,伽马相位始终成核并在β矩阵内生长。同时,讨论了R#2的微观结构演变。此外,轧制温度的增加也导致纤维纹理的显着变化。与γ相的比较,β相具有较强的质地,这是由于沿P阶段的K-S取向关系形成γ粒。在R#1状态下,β相表现出典型的{121} <1-11>纹理,而γ相显示{031} <-5-13>和{112} <1-10>纹理。针对R#2,Beta相位显示{010} <100>立方体纹理,Y相位具有{-215} <5-53>和Goss {110} <001>纹理。通过纳米凸缘研究硬度(H)和减少的弹性模量(ER)。 R#2中的(β+γ)混合物结构具有最高的H(12.63GPa),而E-R与微观结构组合物有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号