...
首页> 外文期刊>Integrative and Comparative Biology >The Evolution of Gene Regulatory Networks that Define Arthropod Body Plans
【24h】

The Evolution of Gene Regulatory Networks that Define Arthropod Body Plans

机译:基因监管网络的演变,限定节肢动物

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Our understanding of the genetics of arthropod body plan development originally stems from work on Drosophila melanogaster from the late 1970s and onward. In Drosophila, there is a relatively detailed model for the network of gene interactions that proceeds in a sequential-hierarchical fashion to define the main features of the body plan. Over the years, we have a growing understanding of the networks involved in defining the body plan in an increasing number of arthropod species. It is now becoming possible to tease out the conserved aspects of these networks and to try to reconstruct their evolution. In this contribution, we focus on several key nodes of these networks, starting from early patterning in which the main axes are determined and the broad morphological domains of the embryo are defined, and on to later stage wherein the growth zone network is active in sequential addition of posterior segments. The pattern of conservation of networks is very patchy, with some key aspects being highly conserved in all arthropods and others being very labile. Many aspects of early axis patterning are highly conserved, as are some aspects of sequential segment generation. In contrast, regional patterning varies among different taxa, and some networks, such as the terminal patterning network, are only found in a limited range of taxa. The growth zone segmentation network is ancient and is probably plesiomorphic to all arthropods. In some insects, it has undergone significant modification to give rise to a more hardwired network that generates individual segments separately. In other insects and in most arthropods, the sequential segmentation network has undergone a significant amount of systems drift, wherein many of the genes have changed. However, it maintains a conserved underlying logic and function.
机译:我们对节肢动物遗传发展的理解最初从20世纪70年代后期和向前从果蝇Melanogaster上的工作。在果蝇中,基因交互网络存在相对详细的模型,其以顺序分层方式进行,以定义车身计划的主要特征。多年来,我们对越来越多的节肢动物物种越来越多的网络而越来越多地了解。现在可以挑剔这些网络的保守方面并尝试重建他们的演变。在这一贡献中,我们专注于这些网络的几个关键节点,从早期图案中开始,其中确定主轴并且定义胚胎的宽形态域,并且在稍后的阶段,其中生长区网络在顺序中活跃添加后段。网络的保护模式非常拼凑,有一些关键方面在所有节肢动物和其他方面都是非常不稳定的。早期轴图案的许多方面是高度保守的,也是序贯分段产生的一些方面。相比之下,区域图案化在不同的分类群之间变化,并且某些网络(例如终端图案网络)仅在有限的分类群中发现。生长区分割网络是古老的,可能是所有节肢动物的思考。在一些昆虫中,它经历了显着的修改,以产生更加硬连线的网络,其单独产生各个段。在其他昆虫和大多数节肢动物中,序贯分割网络经历了大量的系统漂移,其中许多基因已经改变。但是,它保持了保守的潜在逻辑和功能。

著录项

  • 来源
  • 作者

    Auman Tzach; Chipman Ariel D.;

  • 作者单位

    Hebrew Univ Jerusalem Dept Ecol Evolut &

    Behav Edmond J Safra Campus IL-91904 Jerusalem Israel;

    Hebrew Univ Jerusalem Dept Ecol Evolut &

    Behav Edmond J Safra Campus IL-91904 Jerusalem Israel;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 动物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号