...
首页> 外文期刊>Inorganic Chemistry Frontiers >Design of visible-light-response core-shell Fe2O3/CuBi2O4 heterojunctions with enhanced photocatalytic activity towards the degradation of tetracycline: Z-scheme photocatalytic mechanism insight
【24h】

Design of visible-light-response core-shell Fe2O3/CuBi2O4 heterojunctions with enhanced photocatalytic activity towards the degradation of tetracycline: Z-scheme photocatalytic mechanism insight

机译:可见光响应核心壳Fe2O3 / Cubi2O4杂交功能,具有增强的光催化活性朝向四环素降解的光催化活性:Z方案光催化机制洞察力

获取原文
获取原文并翻译 | 示例

摘要

Antibiotics have been detected in various water bodies, which poses a huge threat to the global environment and human life. Making good use of renewable solar energy for the removal of antibiotics from aqueous environment is highly desired. A Z-scheme core-shell Fe2O3/CuBi2O4 heterostructure was synthesized by a one-step hydrothermal method. The morphology and structure of Fe2O3/CuBi2O4 were investigated by a series of characterization techniques. The prepared Fe2O3/CuBi2O4 composites exhibited higher photocatalytic performance for the degradation of tetracycline than pure Fe2O3 and CuBi2O4. Meanwhile, 30 wt% Fe2O3/CuBi2O4 composite demonstrated the highest photocatalytic activity for the degradation of tetracycline (nearly 80% in 120 min) as well as outstanding stability after three cyclic reactions (6 h). This enhanced photocatalytic performance is mainly attributed to the construction of a direct Z-scheme core-shell heterostructure between Fe2O3 and CuBi2O4 in the composite, which promotes the efficient separation of charge carriers, depresses the recombination of photogenerated charges and possesses strong reduction capabilities. In general, this study may provide a strategy to design highly efficient photocatalysts with core-shell heterostructure for environment restoration.
机译:在各种水体中检测到抗生素,这对全球环境和人类生活构成了巨大威胁。良好地利用可再生太阳能来从含水环境中去除抗生素。通过一步水热法合成Z样方核 - 壳Fe2O3 / Cubi2O4异质结构。通过一系列表征技术研究了Fe2O3 / Cubi2O4的形态和结构。制备的Fe2O3 / Cubi2O4复合材料表现出较高的光催化性能,用于使四环素的降解而不是纯FE2O3和CUBI2O4。同时,30wt%Fe2O3 / Cubi2O4复合材料显示出最高的光催化活性,用于降解四环素(120分钟内的近80%)以及三个环状反应后的突出稳定性(6小时)。这种增强的光催化性能主要归因于在复合材料中的Fe2O3和Cubi2O4之间的直接Z方案核心 - 壳异质结构的构建,这促进了电荷载流子的有效分离,从而抑制了光生电荷的重组,并具有强的还原能力。通常,该研究可以提供一种策略来设计具有用于环境修复的核心壳异质结构的高效光催化剂。

著录项

  • 来源
    《Inorganic Chemistry Frontiers 》 |2018年第12期| 共7页
  • 作者单位

    Jiangsu Univ Sci &

    Technol Sch Environm &

    Chem Engn Zhenjiang 212018 Jiangsu Peoples R China;

    Jiangsu Univ Sci &

    Technol Sch Environm &

    Chem Engn Zhenjiang 212018 Jiangsu Peoples R China;

    Jiangsu Univ Sci &

    Technol Sch Environm &

    Chem Engn Zhenjiang 212018 Jiangsu Peoples R China;

    Jiangsu Univ Sci &

    Technol Sch Environm &

    Chem Engn Zhenjiang 212018 Jiangsu Peoples R China;

    Jiangsu Univ Sci &

    Technol Sch Environm &

    Chem Engn Zhenjiang 212018 Jiangsu Peoples R China;

    Jiangsu Univ Sci &

    Technol Sch Environm &

    Chem Engn Zhenjiang 212018 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无机化学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号