...
首页> 外文期刊>Industrial Crops and Products >Biological pretreatment with Trametes versicolor to enhance methane production from lignocellulosic biomass: A metagenomic approach
【24h】

Biological pretreatment with Trametes versicolor to enhance methane production from lignocellulosic biomass: A metagenomic approach

机译:具有Trametes Versicolor的生物预处理,以增强木质纤维素生物量的甲烷生物:一种偏见方法

获取原文
获取原文并翻译 | 示例
           

摘要

The presence of poorly biodegradable components in lignocellulosic biomass limits the methane recovery in anaerobic digesters. The main reason to go for aerobic pretreatment before anaerobic digestion (AD) is to enable enzymatic cleavage of the aromatic rings in lignin by oxygen since it cannot be efficiently degraded under anaerobic conditions. In this study, the advantage of highly-cellulolytic white-rot fungi Trametes versicolor was taken by aerobic pretreatment prior to anaerobic co-digestion of cow manure and selected cereal crop materials (i.e. wheat, rye, barley, triticale) harvested at different stages. Fungal pretreatment improved the methane yield by 10%-18% and cellulose degradation up to 80%. Furthermore, higher volatile fatty acid (VFA) speciation was found in the anaerobic digesters upon fungal pretreatment. 16S rRNA gene amplicon sequencing revealed a more diverse microbial community in the fungal-pretreated anaerobic digesters. Generally, typically-detected bacterial species dominated the digesters; except that Synergistetes was only enriched in the fungal-pretreated digesters. Although Methanosarcianease was the predominant methanogenic archaea, a more diverse methanogenic population was identified in the fungal-pretreated digesters in which Methanobacteriaceaa and Methanomibrobiaceae also took role during biomethanation. Comparatively more unique microbiome of biogas reactors upon fungal pretreatment synergistically affected VFA production, cellulose degradation and eventually methane yield in an affirmative way. Considering the functional importance of bacterial and methanogenic archaeal populations, elevated knowledge of the microbial structures is essential for minimizing process failures and for creating strategies for process optimization of lignocellulose based-AD.
机译:木质纤维素生物质中可生物降解成分不良的存在限制了厌氧消化器中的甲烷回收。在厌氧消化(AD)之前有氧预处理的主要原因是通过氧来使木质素中的芳环的酶促切割,因为它不能在厌氧条件下有效降解。在这项研究中,在牛粪粪便中的厌氧共同消化之前通过有氧预处理和选定在不同阶段收获的谷物作物材料(即小麦,黑麦,小麦,小麦,小麦,在不同阶段收获之前,通过有氧预处理进行了高纤维素分解的白腐真菌Trametes versicolor的优点。真菌预处理将甲烷产率提高10%-18%,纤维素降解高达80%。此外,在真菌预处理时,在厌氧消化器中发现了更高的挥发性脂肪酸(VFA)物种。 16S rRNA基因扩增子测序显示真菌预处理的厌氧消化器中更多样化的微生物群落。通常,通常检测到的细菌物种主导了消化器;除了仅富含真菌预处理的消化器的同时性。虽然MethanoSarcianease是主要的甲状腺原子,但在真菌预处理的消化器中鉴定了更多样化的甲状腺种群,其中甲基杆菌和甲蛋白纤维区也在生物甲基化过程中发挥作用。在真菌预处理时对沼气反应器的比较更独特的微生物组合在于肯定方式协同影响VFA生产,纤维素降解和最终甲烷产量。考虑到细菌和甲状腺原古群的功能重要性,微生物结构的提高了解对于最小化工艺故障并为基于GignOcellulose的过程优化产生策略至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号