首页> 外文期刊>Industrial Robot >Research on robust stabilization control of high-voltage power maintenance robot under wind load action
【24h】

Research on robust stabilization control of high-voltage power maintenance robot under wind load action

机译:风力负荷动作下高压电力维护机器人鲁棒稳定控制研究

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose The power cable maintenance robot is an important equipment to ensure the reliable operation of high-voltage transmission (HVT) lines and is a useful exploration to achieve high-quality power transmission. In respond to a series of technical problems in the operation process, such as robot shaking, terminal positioning error, camera image blurred and visual servo control difficulty which caused by the influence of high altitude random wind load on the motion control of power maintenance robot. The purpose of this study is to minimizing the impact of wind loads on robot motion control on the high voltage transmission line, so as to obtain the sound motion performance. Design/methodology/approach This paper presents a robust stabilization control method for flexible wire power maintenance robot under wind load action, the coupling mathematical model between the flexible wire with the robot has been established, and the robot rolling model under wind load has also been established. According to the tilt sensor, the robot pendulum angle value can be obtained and fitted through sinusoidal function; the robot swing period and frequency under wind load action can be also obtained; the feedforward- and feedback-based robot closed-loop control system is also designed. Findings Through the online detection of wind load dection, so as to dynamic control the clamping force of the robot's dual-arm jaws, therefore, the robot robust stabilization control with different grades of wind load can be realized. Finally, the effectiveness and engineering practicability of the proposed algorithm are verified by simulation experiments and field operation experiments. Compared with the conventional proportional integral differential (PID) algorithm, this method can effectively suppress the influence of wind load on the robot robust stabilization motion control, and the robot posture detection operation control has been further optimized. Originality/value A robust stabilization control method for power robot under wind load is proposed. The coupling motion model of flexible HVT and robot is established. The mathematical relationship between the robot wind rolling angle and the wind force has been deduced, and the corresponding closed-loop control system with feedforward and feedback has also been designed. Through the design of robust stabilization control algorithm based on mixed sensitivity function, the effectiveness of the mixed sensitivity robust stabilization control algorithm is verified by simulation experiments in MATLAB environment. Compared with the traditional PID algorithm, this method can effectively suppress the influence of large-scale disturbance information represented by wind load on the robot motion control. The engineering practicability of the robot robust stabilization control algorithm is further verified by the robot live damper replacement operation under the field wind load, which further improves the robot operation efficiency and intelligence.
机译:目的,电缆维护机器人是一种重要的设备,可确保高压传输(HVT)线路可靠运行,是实现高质量动力传输的有用探索。在响应操作过程中的一系列技术问题,例如机器人摇动,终端定位误差,相机图像模糊和视觉伺服控制难度,这是由高空随机风负荷对电力维护机器人运动控制的影响引起的。本研究的目的是最小化风力负荷对高压传输线上的机器人运动控制的影响,从而获得声音运动性能。设计/方法/方法本文提出了一种稳健的稳定控制方法,用于柔性线电力维护机器人在风负荷动作下,建立了机器人柔性电线之间的耦合数学模型,风负荷下的机器人滚动模型也在已确立的。根据倾斜传感器,可以通过正弦函数获得机器人摆锤角度值;还可以获得风负荷动作下的机器人摆动周期和频率;还设计了前馈 - 和基于反馈的机器人闭环控制系统。通过在线检测风力负荷尖的调查结果,以便动态控制机器人双臂钳口的夹紧力,因此,可以实现具有不同等级的风力载荷的机器人鲁棒稳定控制。最后,通过模拟实验和现场操作实验验证了所提出的算法的有效性和工程实用性。与传统的比例积分差分(PID)算法相比,该方法可以有效地抑制风力负荷对机器人鲁棒稳定运动控制的影响,并且进一步优化了机器人姿势检测操作控制。建议原创/值提出了风负荷下电力机器人的鲁棒稳定控制方法。建立了柔性HVT和机器人的耦合运动模型。已经推导出机器人风滚角和风力之间的数学关系,并且还设计了具有前馈和反馈的相应闭环控制系统。通过基于混合灵敏度函数的鲁棒稳定控制算法的设计,通过Matlab环境模拟实验验证了混合灵敏度鲁棒稳定控制算法的有效性。与传统的PID算法相比,该方法可以有效地抑制风力负荷表示的大规模扰动信息对机器人运动控制的影响。通过现场风负荷下的机器人实时阻尼器更换操作进一步验证了机器人鲁棒稳定控制算法的工程实用性,这进一步提高了机器人运行效率和智能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号