首页> 外文期刊>IMA Journal of Applied Mathematics >Bubble models and real bubbles: Rayleigh and energy-deposit cases in a Tait-compressible liquid
【24h】

Bubble models and real bubbles: Rayleigh and energy-deposit cases in a Tait-compressible liquid

机译:泡沫模型和真实泡沫:瑞利和节能液在达逸 - 可压缩液体中

获取原文
获取原文并翻译 | 示例
           

摘要

In analytical and numerical studies on bubbles in liquids, often the Rayleigh initial condition of a spherical bubble at maximum radius is used: the Rayleigh case. This condition cannot be realized in practice, instead the bubbles need first to be generated and expanded. The energy-deposit case with its initial condition of a small, spherical bubble of high internal pressure that expands into water at atmospheric pressure is studied for comparison with the Rayleigh case. From the many possible configurations, a single bubble near a flat solid boundary is chosen as this is a basic configuration to study erosion and cleaning phenomena. The bubble contains a small amount of non-condensable gas obeying an adiabatic law. The water is compressible according to the Tait equation. The Euler equations in axial symmetry are solved with the help of the open source software package OpenFOAM, based on the finite volume method. The volume of fluid method is used for interface capturing. Rayleigh bubbles of R-max = 500 mu m and energy-deposit bubbles that reach R-max = 500 mu m after expansion in an unbounded liquid are compared with respect to microjet velocity, microjet impact pressure and microjet impact times, when placed or being generated near a flat solid boundary. Velocity and pressure fields from the impact zone are given to demonstrate the sequence of phenomena from axial liquid microjet impact via annular gas-jet and annular liquid-nanojet formation to the Blake splash and the first torus-bubble splitting. Normalized distances D* = D/R-max ( D = initial distance of the bubble centre from the boundary) between 1.02 and 1.5 are studied. Rayleigh bubbles show a stronger collapse with about 50% higher microjet impact velocities and also significantly higher microjet impact pressures.
机译:在液体气泡的分析和数值研究中,使用最大半径的球形气泡的瑞利初始条件:瑞利壳。在实践中不能实现这种情况,而是首先需要产生和扩展气泡。用瑞利案例研究了能量沉积壳体的初始条件,其高内部压力的高内部压力的高内部压力膨胀为大气压。从许多可能的配置中,选择靠近平面实体边界的单个气泡,因为这是研究侵蚀和清洁现象的基本配置。气泡含有少量的不可粘稠气体遵守绝热法。根据扦走方程,水是可压缩的。轴向对称的欧拉方程是在开源软件包OpenFoam的帮助下解决,基于有限体积法。流体方法的体积用于接口捕获。在放置或存在时,将在未绑定的液体中膨胀后达到r-max =500μm的r-max = 500 mu m和能量沉积气泡,在放置或存在时在平坦的固体边界附近产生。给出了冲击区的速度和压力场,以通过环形气体喷射和环形液体纳米喷射形成与轴向液体微喷射的现象序列通过环形气体射流和环形液体纳米喷射和第一圆环分裂。研究了归一化距离D * = D / R-MAX(D =来自边界的气泡中心的初始距离)在1.02和1.5之间进行。 Rayleigh Bubbles显示出较强的崩溃较高的微目声冲击速度较高约50%,微目不移的撞击压力也明显更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号