...
首页> 外文期刊>Atmospheric chemistry and physics >Microphysical sensitivity of coupled springtime Arctic stratocumulus to modelled primary ice over the ice pack, marginal ice, and ocean
【24h】

Microphysical sensitivity of coupled springtime Arctic stratocumulus to modelled primary ice over the ice pack, marginal ice, and ocean

机译:耦合春天北极划分为模拟冰袋,边缘冰和海洋的初级冰的微微物理敏感性

获取原文
获取原文并翻译 | 示例

摘要

This study uses large eddy simulations to test the sensitivity of single-layer mixed-phase stratocumulus to primary ice number concentrations in the European Arctic. Observations from the Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign are considered for comparison with cloud microphysics modelled using the Large Eddy Model (LEM, UK Met. Office). We find that cloud structure is very sensitive to ice number concentrations, N-ice, and small increases can cause persisting mixedphase clouds to glaciate and break up. Three key dependencies on N-ice are identified from sensitivity simulations and comparisons with observations made over the sea ice pack, marginal ice zone (MIZ), and ocean. Over sea ice, we find deposition-condensation ice formation rates are overestimated, leading to cloud glaciation. When ice formation is limited to water-saturated conditions, we find microphysics comparable to aircraft observations over all surfaces considered. We show that warm supercooled (-13 degrees C) mixed-phase clouds over the MIZ are simulated to reasonable accuracy when using both the DeMott et al. (2010) and Cooper (1986) primary ice nucleation parameterisations. Over the ocean, we find a strong sensitivity of Arctic stratus to N-ice. The Cooper (1986) parameterisation performs poorly at the lower ambient temperatures, leading to a comparatively higher N-ice (2.43 L-1 at the cloud-top temperature, approximately -20 degrees C) and cloud glaciation. A small decrease in the predicted N-ice (2.07 L-1 at -20 degrees C), using the DeMott et al. (2010) parameterisation, causes mixedphase conditions to persist for 24 h over the ocean. How-ever, this representation leads to the formation of convective structures which reduce the cloud liquid water through snow precipitation, promoting cloud break-up through a depleted liquid phase. Decreasing the N-ice further (0.54 L-1, using a relationship derived from ACCACIA observations) allows mixed-phase conditions to be maintained for at least 24 h with more stability in the liquid and ice water paths. Sensitivity to N-ice is also evident at low number concentrations, where 0.1 x N-ice predicted by the DeMott et al. (2010) parameterisation results in the formation of rainbands within the model; rainbands which also act to deplete the liquid water in the cloud and promote break-up.
机译:该研究采用大型涡流模拟,以测试单层混合相划分为欧洲北极初级冰数浓度的敏感性。考虑来自北极(Accacia)运动中的气溶胶耦合和气候相互作用的观察被认为是使用大涡模型(LEM,UK遇见的云微物质学的比较。办公室)。我们发现云结构对冰数浓度非常敏感,N-冰,小幅增加可能导致持久的混合同云冰川冰川。 N-ICE上的三个关键依赖性从敏感性模拟和比较,与海冰包,边缘冰区(MIZ)和海洋进行的观察结果。在海冰上,我们发现沉积凝结冰形成率高估,导致云冰川。当冰形成限于水饱和条件时,我们发现与飞机观测相比考虑的微生物质相当于考虑的所有表面。我们表明,在使用德米特等人时,Miz上的温暖过冷(-13℃)混合相云在合理的准确性上模拟。 (2010年)和Cooper(1986)原发性冰成核参数化。在海洋上,我们发现北极Stratus对N-冰的强烈敏感性。 COOPOR(1986)参数化在较低的环境温度下表现不佳,导致较高的N-冰(2.43L-1在云 - 顶部温度下,约-20℃)和云冰荫处。使用Demott等人的预测的N-ICE(2.07L-1在-20℃)中的小降低。 (2010)参数化,导致混合的条件在海洋上持续24小时。然而,这种代表性导致对流结构的形成,使云液体通过雪降降低,通过耗尽液相促进云分解。进一步降低N-冰(使用源自Accacia观察的关系0.54L-1)允许在液体和冰水路径中具有更高稳定性的混合相条件至少24小时。在低数量浓度下对N冰的敏感性也是明显的,其中德米特等人预测了0.1×N-冰。 (2010)参数化导致模型内的雨带的形成;雨带也行动耗尽云中的液态水并促进分手。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号