首页> 外文OA文献 >Microphysical sensitivity of coupled springtime Arctic stratocumulus to modelled primary ice over the ice pack, marginal ice, and ocean
【2h】

Microphysical sensitivity of coupled springtime Arctic stratocumulus to modelled primary ice over the ice pack, marginal ice, and ocean

机译:耦合的春季北极平积云对冰袋,边缘冰和海洋上模拟的原冰的微物理敏感性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study uses large eddy simulations to test the sensitivity ofsingle-layer mixed-phase stratocumulus to primary ice number concentrationsin the European Arctic. Observations from the Aerosol-Cloud Coupling andClimate Interactions in the Arctic (ACCACIA) campaign are considered forcomparison with cloud microphysics modelled using the Large Eddy Model (LEM,UK Met. Office). We find that cloud structure is very sensitive to ice numberconcentrations, , and small increases can cause persistingmixed-phase clouds to glaciate and break up.Three key dependencies on are identified from sensitivitysimulations and comparisons with observations made over the sea ice pack,marginal ice zone (MIZ), and ocean. Over sea ice, we finddeposition–condensation ice formation rates are overestimated, leading tocloud glaciation. When ice formation is limited to water-saturatedconditions, we find microphysics comparable to aircraft observations over allsurfaces considered. We show that warm supercooled (−13 °C)mixed-phase clouds over the MIZ are simulated to reasonable accuracy whenusing both the DeMott et al.(2010) and Cooper(1986) primaryice nucleation parameterisations. Over the ocean, we find a strongsensitivity of Arctic stratus to . TheCooper(1986) parameterisation performs poorly at the lowerambient temperatures, leading to a comparatively higher (2.43 L at the cloud-top temperature, approximately −20 °C)and cloud glaciation. A small decrease in the predicted (2.07 L at −20 °C), using the DeMott et al.(2010)parameterisation, causes mixed-phase conditions to persist for 24 h over theocean. However, this representation leads to the formation of convectivestructures which reduce the cloud liquid water through snow precipitation,promoting cloud break-up through a depleted liquid phase. Decreasing the further (0.54 L, using a relationship derived fromACCACIA observations) allows mixed-phase conditions to be maintained for atleast 24 h with more stability in the liquid and ice water paths.Sensitivity to is also evident at low numberconcentrations, where 0.1  ×   predicted by theDeMott et al.(2010) parameterisation results in the formation of rainbandswithin the model; rainbands which also act to deplete the liquid water in thecloud and promote break-up.
机译:这项研究使用大型涡流模拟来测试单层混合相层积云对欧洲北极初生冰数浓度的敏感性。来自北极的气溶胶-云耦合和气候相互作用(ACCACIA)活动的观测结果被认为与使用大涡模型(LEM,英国气象局)建模的云微观物理学进行了比较。我们发现云结构对冰数浓度非常敏感,并且小幅增加会导致持久的混合相云冰化和破裂。通过敏感性模拟以及与对海冰袋,边缘冰区的观测结果进行比较,确定了三个关键的依存关系(MIZ)和海洋。在海冰上,我们发现沉积-凝结冰的形成速率被高估,导致云层冰化。当冰的形成仅限于水饱和条件时,我们发现微观物理学与飞机在所考虑的所有表面上的观察结果相当。我们显示,当同时使用DeMott等人(2010)和Cooper(1986)的原始成核参数设置时,MIZ上的温暖的过冷(−13°C)混合相云被模拟到合理的精度。在海洋上,我们发现北极地层对。 Cooper(1986)的参数化在较低的环境温度下表现不佳,导致相对较高的温度(在云顶温度大约为-20°C时为2.43 L)和云层冰化。使用DeMott et al。(2010)参数化预测值的小幅下降(在-20°C下为2.07°L),导致混合相条件在整个海洋上持续存在24°h。但是,这种表示导致形成对流结构,该对流结构通过降雪减少了云状液态水,促进了云层在耗尽的液相中破裂。进一步减小(使用ACCACIA观测值得出的关系为0.54 L)可使至少24 mixedh的混合相条件得以维持,并且在液体和冰水路径中的稳定性更高。在低浓度时对的敏感性也很明显,其中预测为0.1×由DeMott等人(2010)进行的参数化导致模型中雨带的形成;雨带还起到消耗云中液态水并促进分解的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号