...
首页> 外文期刊>ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B. Mechanical Engineering >On the Optimal Decomposition of High-Dimensional Solution Spaces of Complex Systems
【24h】

On the Optimal Decomposition of High-Dimensional Solution Spaces of Complex Systems

机译:复杂系统高维解决方案的最佳分解

获取原文
获取原文并翻译 | 示例
           

摘要

In the early development phase of complex technical systems, uncertainties caused by unknown design restrictions must be considered. In order to avoid premature design decisions, sets of good designs, i.e., designs which satisfy all design goals, are sought rather than one optimal design that may later turn out to be infeasible. A set of good designs is called a solution space and serves as target region for design variables, including those that quantify properties of components or subsystems. Often, the solution space is approximated, e.g., to enable independent development work. Algorithms that approximate the solution space as high-dimensional boxes are available, in which edges represent permissible intervals for single design variables. The box size is maximized to provide large target regions and facilitate design work. As a result of geometrical mismatch, however, boxes typically capture only a small portion of the complete solution space. To reduce this loss of solution space while still enabling independent development work, this paper presents a new approach that optimizes a set of permissible two-dimensional (2D) regions for pairs of design variables, so-called 2D-spaces. Each 2D-space is confined by polygons. The Cartesian product of all 2D-spaces forms a solution space for all design variables. An optimization problem is formulated that maximizes the size of the solution space, and is solved using an interior-point algorithm. The approach is applicable to arbitrary systems with performance measures that can be expressed or approximated as linear functions of their design variables. Its effectiveness is demonstrated in a chassis design problem.
机译:在复杂技术系统的早期开发阶段,必须考虑由未知的设计限制引起的不确定性。为了避免过早的设计决策,寻求符合所有设计目标的良好设计集,而不是一个最佳设计,以后可能会变得不可行。一组良好的设计称为解决方案空间,并用作设计变量的目标区域,包括量化组件或子系统属性的设计变量。通常,解决方案空间近似为例如,以实现独立的开发工作。可提供近似溶液空间作为高维框的算法,其中边缘代表单个设计变量的允许间隔。盒子尺寸最大化以提供大型目标区域并促进设计工作。然而,由于几何不匹配,盒子通常仅捕获完整解决方案空间的一小部分。为了减少这种解决方案空间的损失,同时仍然能够实现独立的开发工作,提出了一种新的方法,可以针对一组设计变量,所谓的2D空间优化一组允许的二维(2D)区域。每个2d空间都被多边形限制在一起。所有2D空间的笛卡尔产品都形成了所有设计变量的解决方案空间。配制了优化问题,从而最大化解决方案空间的大小,并使用内部点算法进行解决。该方法适用于任意系统,具有可以表达或近似为其设计变量的线性函数的性能测量。其有效性在底盘设计问题中证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号