...
首页> 外文期刊>ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B. Mechanical Engineering >Propagation of Input Uncertainty in Presence of Model-Form Uncertainty: A Multifidelity Approach for Computational Fluid Dynamics Applications
【24h】

Propagation of Input Uncertainty in Presence of Model-Form Uncertainty: A Multifidelity Approach for Computational Fluid Dynamics Applications

机译:在模型形式不确定性存在下输入不确定性的传播:计算流体动力学应用的多尺寸方法

获取原文
获取原文并翻译 | 示例
           

摘要

Proper quantification and propagation of uncertainties in computational simulations are of critical importance. This issue is especially challenging for computational fluid dynamics (CFD) applications. A particular obstacle for uncertainty quantifications in CFD problems is the large model discrepancies associated with the CFD models used for uncertainty propagation. Neglecting or improperly representing the model discrepancies leads to inaccurate and distorted uncertainty distribution for the quantities of interest (QoI). High-fidelity models, being accurate yet expensive, can accommodate only a small ensemble of simulations and thus lead to large interpolation errors and/or sampling errors; low-fidelity models can propagate a large ensemble, but can introduce large modeling errors. In this work, we propose a multimodel strategy to account for the influences of model discrepancies in uncertainty propagation and to reduce their impact on the predictions. Specifically, we take advantage of CFD models of multiple fidelities to estimate the model discrepancies associated with the lower-fidelity model in the parameter space. A Gaussian process (GP) is adopted to construct the model discrepancy function, and a Bayesian approach is used to infer the discrepancies and corresponding uncertainties in the regions of the parameter space where the high-fidelity simulations are not performed. Several examples of relevance to CFD applications are performed to demonstrate the merits of the proposed strategy. Simulation results suggest that, by combining low- and high-fidelity models, the proposed approach produces better results than what either model can achieve individually.
机译:在计算模拟中适当的量化和不确定性的传播是至关重要的。该问题特别具有挑战性,用于计算流体动力学(CFD)应用。 CFD问题中不确定性量化的特定障碍是与用于不确定性传播的CFD模型相关的大型模型差异。忽视或不正当代表模型差异导致利益量(Qoi)的不准确和扭曲的不确定性分布。高保真型号,准确且昂贵,可以仅适应模拟的小集合,从而导致大的插值误差和/或采样误差;低保真型号可以传播一个大型集合,但可以引入大型建模错误。在这项工作中,我们提出了一种多模型策略,以解释模型差异在不确定性传播中的影响,并降低对预测的影响。具体而言,我们利用多个保真度的CFD模型来估计与参数空间中的低保真模型相关的模型差异。采用高斯过程(GP)来构建模型差异函数,贝叶斯方法用于推断不执行高保真仿真的参数空间区域的差异和相应的不确定性。执行与CFD应用程序相关的几个例子,以证明所提出的策略的优点。仿真结果表明,通过组合低保真模型,所提出的方法产生比任何一种都可以单独实现的方法更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号