...
首页> 外文期刊>Antioxidants and redox signalling >Protein S-Nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-Nitrosothiol-Based Signaling
【24h】

Protein S-Nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-Nitrosothiol-Based Signaling

机译:蛋白质S-亚硝基化:基于S-亚硝素的信号传导的特异性和酶促调节的决定因素

获取原文
获取原文并翻译 | 示例

摘要

Significance: Protein S-nitrosylation, the oxidative modification of cysteine by nitric oxide (NO) to form protein S-nitrosothiols (SNOs), mediates redox-based signaling that conveys, in large part, the ubiquitous influence of NO on cellular function. S-nitrosylation regulates protein activity, stability, localization, and proteinprotein interactions across myriad physiological processes, and aberrant S-nitrosylation is associated with diverse pathophysiologies. Recent Advances: It is recently recognized that S-nitrosylation endows S-nitroso-protein (SNO-proteins) with S-nitrosylase activity, that is, the potential to trans-S-nitrosylate additional proteins, thereby propagating SNO-based signals, analogous to kinase-mediated signaling cascades. In addition, it is increasingly appreciated that cellular S-nitrosylation is governed by dynamically coupled equilibria between SNO-proteins and low-molecular-weight SNOs, which are controlled by a growing set of enzymatic denitrosylases comprising two main classes (high and low molecular weight). S-nitrosylases and denitrosylases, which together control steady-state SNO levels, may be identified with distinct physiology and pathophysiology ranging from cardiovascular and respiratory disorders to neurodegeneration and cancer. Critical Issues: The target specificity of protein S-nitrosylation and the stability and reactivity of protein SNOs are determined substantially by enzymatic machinery comprising highly conserved transnitrosylases and denitrosylases. Understanding the differential functionality of SNO-regulatory enzymes is essential, and is amenable to genetic and pharmacological analyses, read out as perturbation of specific equilibria within the SNO circuitry. Future Directions: The emerging picture of NO biology entails equilibria among potentially thousands of different SNOs, governed by denitrosylases and nitrosylases. Thus, to elucidate the operation and consequences of S-nitrosylation in cellular contexts, studies should consider the roles of SNO-proteins as both targets and transducers of S-nitrosylation, functioning according to enzymatically governed equilibria.
机译:意义:蛋白质S-亚硝基化,通过一氧化氮(NO)形成蛋白质S-亚硝硫醇(SNOS)的氧化改性,介导氧化还原的信号传递,大部分,NO对细胞功能的无处不存在的影响。 S-亚硝基化调节蛋白质活性,稳定性,定位和蛋白质蛋白质蛋白质蛋白质蛋白相互作用,并且异常的S-亚硝基化与不同的病理物质相关。最近的进展:最近认识到S-亚硝基化赋予S-亚硝基 - 蛋白活性的S-亚硝基蛋白(SnO-蛋白),即,对反式-S-亚硝基化物另外的蛋白质的电位,从而繁殖基于SnO的信号,类似对激酶介导的信号级联。此外,越来越理解,细胞S-亚硝基化由单链蛋白和低分子量单位之间的动态耦合平衡来控制,这些平衡是由含有两个主要类别(高低分子量高和低分子量)的生长酶酶促酶(高和低分子量)控制的)。可以用不同的生理学和病理生理学鉴定在一起控制稳态SnO水平的S-亚硝基酯酶和脱氮酶,从心血管和呼吸系统疾病到神经变性和癌症。关键问题:蛋白质S-亚硝基化的靶特异性以及蛋白质SnOS的稳定性和反应性基本上通过包含高度保守的跨亚硝基酶和脱氮酶的酶促机械测定。理解单链调节酶的差异函数至关重要,并且可用于遗传和药理学分析,作为SNO电路内的特定均衡的扰动读出。未来的方向:没有生物学的新出现的图片在潜在数千个不同的SnO中,由二硝基酶和亚硝基酶治理的潜在数千种不同的SnO。因此,为了阐明在细胞环境中S-亚硝基化的操作和后果,研究应考虑SnO-蛋白作为S-亚硝基化的靶标和旋转剂的作用,根据酶促治理的平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号