...
首页> 外文期刊>Applied Soft Computing >Surrogate-based optimisation using adaptively scaled radial basis functions
【24h】

Surrogate-based optimisation using adaptively scaled radial basis functions

机译:基于代理的优化,使用自适应地缩放径向基函数

获取原文
获取原文并翻译 | 示例

摘要

Aerodynamic shape optimisation is widely used in several applications, such as road vehicles, aircraft and trains. This paper investigates the performance of two surrogate-based optimisation methods; a Proper Orthogonal Decomposition-based method and a force-based surrogate model. The generic passenger vehicle DrivAer is used as a test case where the predictive capability of the surrogate in terms of aerodynamic drag is presented. The Proper Orthogonal Decomposition-based method uses simulation results from topologically different meshes by interpolating all solutions to a common mesh for which the decomposition is calculated. Both the Proper Orthogonal Decomposition- and force-based approaches make use of Radial Basis Function interpolation. The Radial Basis Function hyperparameters are optimised using differential evolution. Additionally, the axis scaling is treated as a hyperparameter, which reduces the interpolation error by more than 50% for the investigated test case. It is shown that the force-based approach performs better than the Proper Orthogonal Decomposition method, especially at low sample counts, both with and without adaptive scaling. The sample points, from which the surrogate model is built, are determined using an optimised Latin Hypercube sampling plan. The Latin Hypercube sampling plan is extended to include both continuous and categorical values, which further improve the surrogate's predictive capability when categorical design parameters, such as on/off parameters, are included in the design space. The performance of the force-based surrogate model is compared with four other gradient-free optimisation techniques: Random Sample, Differential Evolution, Nelder-Mead and Bayesian Optimisation. The surrogate model performed as good as, or better than these algorithms, for 17 out of the 18 investigated benchmark problems. (C) 2020 The Authors. Published by Elsevier B.V.
机译:空气动力学形状优化广泛用于若干应用,例如道路车辆,飞机和列车。本文调查了两种基于代理的优化方法的性能;基于正交的分解的方法和基于力的代理模型。通用乘用车Drivaer用作测试用例,其中提出了代理的预测能力在空气动力学阻力方面。基于正交的分解的方法使用模拟通过将所有解决方案插入到计算分解的公共网格中的所有解决方案来使用拓扑不同的网格。适当的正交分解和基于力的方法都利用径向基函数插值。径向基函数超参数使用差分演进进行了优化。另外,轴缩放被视为一个超参数,这将插值误差降低了调查的测试用例的50%以上。结果表明,基于力的方法比适当的正交分解方法更好地执行,尤其是在低样本计数,两者都有和没有自适应缩放。使用优化的拉丁超立方体采样计划确定构建代理模型的采样点。拉丁式超立方体采样计划扩展到包括连续和分类值,这进一步提高了当诸如开/关参数的分类设计参数(例如开/关参数)中的特殊预测能力。基于力的替代模型的性能与四种其他梯度优化技术进行了比较:随机样品,差分演进,纳米米和贝叶斯优化。替代模型与这些算法一样好或更好,为18个调查的基准问题。 (c)2020作者。 elsevier b.v出版。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号