首页> 外文期刊>Analytical Biochemistry: An International Journal of Analytical and Preparative Methods >Radiative decay engineering 8: Coupled emission microscopy for lens-free high-throughput fluorescence detection
【24h】

Radiative decay engineering 8: Coupled emission microscopy for lens-free high-throughput fluorescence detection

机译:辐射衰减工程8:耦合发射显微镜用于无镜头高通量荧光检测

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Abstract Fluorescence spectroscopy and imaging are now used throughout the biosciences. Fluorescence microscopes, spectrofluorometers, microwell plate readers and microarray imagers all use multiple optical components to collect, redirect and focus the emission onto single point or array imaging detectors. For almost all biological samples, except those with regular nanoscale features, emission occurs in all directions. With the exception of complex microscope objectives with large collection angles (NA?≤?0.5), all these instruments collect only a small fraction of the total emission. Because of the increasing knowledge base on fluorophores within near-field (200?nm) distances from plasmonic and photonic structures we can anticipate the development of compact devices in which the sample to be detected is located directly on solid state detectors such as CCDs or CMOS cameras. Near-field interactions of fluorophores with metallic or dielectric multi-layer structures (MLSs) can capture a large fraction of the total emission. Depending on the composition and dimensions of the MLSs, the spatial distribution of the sample emission results in distinct optical patterns on the detector surface. With either plain glass slides or MLSs the most commonly used front focal plane (FFP) images reveal the x-y spatial distribution of emission from the sample. Another approach, which is often used with two or three-dimensional nanostructures, is back focal plane (BFP) imaging. The BFP images reveal the angular distribution of the emission. The FFP and BFP images occur at certain distances from the sample which is determined by the details of the o
机译:<![CDATA [ 抽象 荧光光谱和成像现在在整个生物期间使用。荧光显微镜,光谱荧光仪,微孔板读取器和微阵列成像器都使用多个光学元件来收集,重定向并将发射聚焦到单点或阵列成像探测器上。对于几乎所有生物样本,除了具有常规纳米级特征的生物样本,排放在各方面发生。除了具有大集合角度的复杂显微镜目标外,所有这些仪器只能收集总排放的一小部分。由于近场(&LT; 200?NM)内的荧光团的知识基础增加了来自等离子体和光子结构的距离,我们可以预测要检测的样品的紧凑型器件的开发直接位于诸如CCD的固态探测器上或CMOS相机。荧光团与金属或介电多层结构(MLS)的近场相互作用可以捕获总排放的大部分。根据MLSS的组成和尺寸,样品发射的空间分布导致检测器表面上的不同光学图案。具有普通玻璃载玻片或MLSS,最常用的前焦平面(FFP)图像显示来自样品的发射的X-Y空间分布。一种通常与两个或三维纳米结构一起使用的另一种方法是背部焦平面(BFP)成像。 BFP图像揭示了发射的角度分布。 FFP和BFP图像在来自样本的某些距离处发生,该样本由o的细节确定

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号