首页> 外文期刊>Current applied physics: the official journal of the Korean Physical Society >Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band
【24h】

Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band

机译:通过调节能带延伸高效CIGS太阳能电池的近红外波长范围的吸收

获取原文
获取原文并翻译 | 示例
           

摘要

The efficient photon harvesting in near infrared wavelength range is still a challenging problem for high performance Cu(In1-x, Ga-x)Se-2 (CIGS) solar cell. Herein, adjusting the energy band distribution of CIGS solar cell could provide significant academic guidance for devices with superior output electric power. To understand the role of each functional layer, the optimal 3000 nm CIGS absorber layer with 1.3 eV bandgap and 30 nm CdS buffer layer were firstly obtained via simulating the uniform band-gap structures. By introducing CIGS absorber layer with a double grading Ga/(Ga+In) profile, the power conversion efficiency of the double gradient band gap cell is superior to that of uniform band-gap cell through extending absorption of near-infrared wavelength range. Upon optimization, the best power conversion efficiency of CIGS with a double gradient band gap solar cell is improved significantly to 24.90%, among the best values reported in literatures, which is an 8.17% relative increase compared with that of the uniform band-gap cell. Our findings provide a theoretical guide toward the design of high performance solar cells and enrich the understandings of the energy band engineering for developing of novel semiconductor devices. (c) 2018 Elsevier B.V. All rights reserved.
机译:近红外波长范围内的有效光子收获仍然是高性能Cu(In1-X,Ga-X)SE-2(CIGS)太阳能电池的具有挑战性问题。这里,调整CIGS太阳能电池的能带分布可以为具有优异输出电力的设备提供显着的学术指导。为了了解每个功能层的作用,首先通过模拟均匀的带间隙结构首先获得具有1.3eV带隙和30nm CDS缓冲层的最佳3000nm cigs吸收层。通过用双分级Ga /(Ga + In)轮廓引入CIGS吸收层,通过延伸近红外波长范围的吸收,双梯度带隙单元的功率转换效率优于均匀的带间隙电池的功率转换效率。在优化时,具有双梯度带隙太阳能电池的CIGS的最佳功率转换效率显着提高至24.90%,其中文献中报告的最佳值是与均匀带间隙细胞相比的8.17%的相对增加。 。我们的研究结果为高性能太阳能电池设计提供了理论指导,并丰富了用于开发新型半导体器件的能源带工程的理论。 (c)2018 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号