首页> 外文期刊>ACS catalysis >CO2 Photoreduction via Quantum Tunneling: Thin TiO2-Coated GaP with Coherent Interface To Achieve Electron Tunneling
【24h】

CO2 Photoreduction via Quantum Tunneling: Thin TiO2-Coated GaP with Coherent Interface To Achieve Electron Tunneling

机译:CO2通过量子隧道光学扫描:用相干界面薄TiO2涂层间隙实现电子隧道

获取原文
获取原文并翻译 | 示例
           

摘要

Photocatalysts for CO2 photoreduction such as GaP often suffer from poor stability due to a high reduction environment as required for CO2 reduction, e.g., -1.9 V vs SCE to reach the current density of 10 mA/cm(2) at pH = 5.8 on p-GaP (Hallman, M. Nature 1978, 275, 115). The coating with stable oxides appears to be a promising solution, but many fundamental aspects such as the epitaxial relation between materials, the coating layer thickness, and the consequent photoactivity remain unknown. Here, using a thin TiO2-coated GaP as a model system, we have systematically investigated the dependence of photoactivity upon the deposition of TiO2 on GaP surfaces. By combining the modified phenomenological theory of Martensitic crystallography and a stochastic surface walking global search, we resolve the atomic-level structures of the interface between GaP and TiO2, a set of coherent interfaces between TiO2 and GaP ((001)(TiO2)//(100)(GaP), (101)(TiO2)//(110)(GaP), and (112)(TiO2)//(100)(GaP)). Due to the negligible interface strain, the epitaxial TiO2 coating layer is found to be as stable as bulk TiO2 even with a thickness below 1 nm, suggesting the presence of the well-ordered interface is a critical condition for promoting electron-hole separation in photocatalysis. We demonstrate that a photoelectron generated from GaP bulk can readily tunnel through the thin TiO2 layer (0.5-3 nm) without significant decay, which can decrease the CO2 reduction barrier significantly by 1.02 eV as compared to that without electron tunneling; alternatively, the photoelectron may also undergo lattice hopping to the TiO2 surface to promote hydrogen evolution as required in water splitting. Our results rationalize the recent finding that the high CO2 reduction ability of TiO2 coated GaP at a critical thickness (<10 nm). Using the theoretical framework developed here, we predict that the TiO2 coating strategy could be extended naturally to a range of photoabsorbing materials, including zincblende semiconductors and organic-inorganic hybrid halide perovskites, which can achieve a coherent interface and exhibit photoactivity toward water splitting and CO2 reduction.
机译:用于CO 2光电的光催化剂如间隙通常由于CO 2还原所需的高还原环境而稳定性较差,例如-1.9V VS SCE在P上的pH = 5.8时达到10mA / cm(2)的电流密度-Gap(Hallman,M.自然1978,275,115)。具有稳定氧化物的涂层似乎是有希望的解决方案,但许多基本方面如材料之间的外延关系,涂层层厚度和随后的光粘接仍然未知。这里,使用薄的TiO2涂覆的间隙作为模型系统,我们系统地研究了光度依赖性在间隙表面上TiO2沉积的依赖性。通过组合马氏体晶体学和随机表面行走全球搜索的修改现象学理论,我们解析间隙和TiO2之间的界面的原子水平结构,在TiO2和间隙之间的一组相干界面((001)(TiO2)// (100)(间隙),(101)(TiO 2)//(110)(间隙),和(112)(TiO 2)//(100)(间隙))。由于界面应变可忽略不计,发现外延TiO 2涂层也可以像大量TiO 2一样稳定,厚度低于1nm,表明良好有序界面的存在是促进光催化中的电子空穴分离的关键条件。我们证明从间隙堆积产生的光电子可以容易地通过薄TiO2层(0.5-3nm)而无明显衰减,这与没有电子隧道的情况相比,通过1.02eV显着降低CO 2降低屏障;或者,光电子也可以经历跳动器跳到TiO 2表面,以促进水分裂中所需的氢逸出。我们的结果使最近发现TiO2涂覆间隙的高二氧化碳降低能力在临界厚度(<10nm)。使用此处开发的理论框架,我们预测TiO2涂层策略可以自然地延伸到一系列光吸收材料,包括锌苄膜半导体和有机 - 无机杂交卤化物钙酸盐,其可以实现相干界面并对水分裂和CO2表现出光度的光度减少。

著录项

  • 来源
    《ACS catalysis》 |2019年第6期|共11页
  • 作者单位

    Fudan Univ Collaborat Innovat Ctr Chem Energy Mat Shanghai Key Lab Mol Catalysis &

    Innovat Mat Minist Educ Dept Chem Key Lab Computat Phys Sci Shanghai 200433 Peoples R China;

    Fudan Univ Collaborat Innovat Ctr Chem Energy Mat Shanghai Key Lab Mol Catalysis &

    Innovat Mat Minist Educ Dept Chem Key Lab Computat Phys Sci Shanghai 200433 Peoples R China;

    Fudan Univ Collaborat Innovat Ctr Chem Energy Mat Shanghai Key Lab Mol Catalysis &

    Innovat Mat Minist Educ Dept Chem Key Lab Computat Phys Sci Shanghai 200433 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

    heteromaterial; photocatalysis; CO2 reduction; DFT; electron tunneling;

    机译:异国;光催化;CO2减少;DFT;电子隧道;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号