...
首页> 外文期刊>ACS catalysis >Glycosidic C-O Bond Activation in Cellulose Pyrolysis: Alpha Versus Beta and Condensed Phase Hydroxyl-Catalytic Scission
【24h】

Glycosidic C-O Bond Activation in Cellulose Pyrolysis: Alpha Versus Beta and Condensed Phase Hydroxyl-Catalytic Scission

机译:纤维素热解中的糖苷C-O键活化:α与β和缩合相羟基催化裂变

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Mechanistic insights into glycosidic bond activation in cellulose pyrolysis were obtained via first-principles density functional theory calculations that explain the peculiar similarity in kinetics for different stereochemical glycosidic bonds (beta vs alpha) and establish the role of the three-dimensional hydroxyl environment around the reaction center in activation dynamics. The reported activating mechanism of the a-isomer was shown to require the initial formation of a transient C-1-O-2-C-2 epoxide that subsequently undergoes transformation to levoglucosan. Density functional theory results from maltose, a model compound for the alpha-isomer, show that the intramolecular C-2 hydroxyl group favorably interacts with lone pair electrons on the ether oxygen atom of an alpha-glycosidic bond in a manner similar to the hydroxymethyl (C-6 hydroxyl) group interacting with the lone pair electrons on the ether oxygen atom of a beta glycosidic bond. This mechanism has an activation energy of 219 kJ mol(-1), which is similar to the barriers reported for noncatalytic transglycosylation mechanism similar to 209 kJ mol(-1)) and in good agreement with experimentally measured barriers for a-cyclodextrin conversion at high temperatures. The results help explain the lack of sensitivity of depolymerization kinetics to glycosidic bond stereochemistry. Subsequent constrained ab initio molecular dynamics (AIMD) simulations revealed that vicinal hydroxyl groups in the condensed environment of a reacting carbohydrate melt anchor transition states via two-to-three hydrogen bonds and lead to lower free energy barriers (similar to 134-155 kJ mol(-1)) in agreement with previous experiments.
机译:通过第一原理函数理论计算获得纤维素热解中糖苷键活化的机械洞察力,该函数理论计算得到了不同立体化学糖苷键(β与α)的动力学中的特殊相似性,并建立了在反应周围的三维羟基环境的作用激活动力学中的中心。所报道的A-异构体的激活机制被证明需要初始形成瞬时C-1-O-2-C-2环氧化物,其随后经历左葡聚糖的转化。密度函数理论由麦芽糖,α-异构体的模型化合物结果表明,分子内C-2羟基良好地与α-糖苷键的醚氧原子上的孤立式相互作用,以类似于羟甲基( C-6羟基)基团与β糖苷键的醚氧原子上的孤立对电子相互作用。该机制具有219kJ摩尔(-1)的激活能量,其类似于报告的非催化转基质化机制报告的屏障与209kJ摩尔(-1)类似,并且与实验测量的A-Cyclodextrin转化屏障良好高温。结果有助于解释缺乏解聚动力学对糖苷键立体化学的敏感性。随后的约束AB初始分子动力学(AIMD)模拟显示,通过双对三氢键反应的碳水化合物熔融锚化转换状态的邻羟基在反应的溶解状态下,导致较低的自由能屏障(类似于134-155 kJ摩尔(-1))与先前的实验一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号