首页> 外文期刊>ACS catalysis >Cleaning Up Mechanistic Debris Generated by Twister Ribozymes Using Computational RNA Enzymology
【24h】

Cleaning Up Mechanistic Debris Generated by Twister Ribozymes Using Computational RNA Enzymology

机译:使用计算RNA酶学清理捻线核酶产生的机械碎屑

获取原文
获取原文并翻译 | 示例
       

摘要

The catalytic properties of RNA have been a subject of fascination and intense research since their discovery over 30 years ago. Very recently, several classes of nucleolytic ribozymes have emerged and been characterized structurally. Among these, the twister ribozyme has been center-stage and a topic of debate about its architecture and mechanism owing to conflicting interpretations of different crystal structures and in some cases conflicting interpretations of the same functional data. In the present work, we attempt to clean up the mechanistic "debris" generated by twister ribozymes using a comprehensive computational RNA enzymology approach aimed to provide a unified interpretation of existing structural and functional data. Simulations in the crystalline environment and in solution provide insight into the origins of observed differences in crystal structures and coalesce on a common active site architecture and dynamical ensemble in solution. We use GPU-accelerated free energy methods with enhanced sampling to ascertain microscopic nucleobase pKa values of the implicated general acid and base, from which predicted activity-pH profiles can be compared directly with experiments. Next, ab initio quantum mechanical/molecular mechanical (QM/MM) simulations with full dynamic solvation under periodic boundary conditions are used to determine mechanistic pathways through multidimensional free energy landscapes for the reaction. We then characterize the rate-controlling transition state and make predictions about kinetic isotope effects and linear free energy relations. Computational mutagenesis is performed to explain the origin of rate effects caused by chemical modifications and to make experimentally testable predictions. Finally, we provide evidence that helps to resolve conflicting issues related to the role of metal ions in catalysis. Throughout each stage, we highlight how a conserved L-platform structural motif, together with a key L-anchor residue, forms the characteristic active site scaffold enabling each of the catalytic strategies to come together for not only the twister ribozyme but also the majority of the known small nucleolytic ribozyme classes.
机译:自从30年前的发现以来,RNA的催化性能是迷恋和激烈的研究。最近,已经出现了几种类核酸核酶并在结构上表征。其中,由于对不同晶体结构的解释相互冲突,并且在某些情况下,在其架构和机制中,韦斯特核祝核祝的辩论和机制是争论的。在本作本作中,我们试图使用综合计算RNA酶学方法清理扭转核酶产生的机械“碎片”,旨在提供对现有结构和功能数据的统一解释。晶体环境中的模拟和解决方案提供了对晶体结构的观察到差异的起源以及解决方案中的常见活动场所架构和动态集合的起源的洞察。我们使用GPU加速的自由能方法具有增强的采样来确定含有含有的一般酸和碱的微观核碱基PKA值,从中可以直接与实验比较预测的活性-PH分布。接下来,在周期性边界条件下具有全动态溶剂的AB初始量子机械/分子机械(QM / mm)模拟用于通过多维自由能景观来确定反应的机械途径。然后,我们表征了速率控制过渡状态,并对动力学同位素效应和线性自由能关系进行了预测。进行计算诱变以解释由化学修改引起的速率效应的起源,并进行实验可测试的预测。最后,我们提供有助于解决与金属离子在催化中有关的冲突问题的证据。在整个阶段,我们突出了一个保守的L-平台结构基序与关键的L-Anchor残留物,形成特征活性部位支架,使得每个催化策略不仅是捻型核酶,而且是大多数已知的小核水溶性核酶类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号