...
首页> 外文期刊>ACS catalysis >Regulatory Role of One Critical Catalytic Loop of Polypeptide N-Acetyl-Galactosaminyltransferase-2 in Substrate Binding and Catalysis during Mucin-Type O-Glycosylation
【24h】

Regulatory Role of One Critical Catalytic Loop of Polypeptide N-Acetyl-Galactosaminyltransferase-2 in Substrate Binding and Catalysis during Mucin-Type O-Glycosylation

机译:多肽临界催化环的调节作用N-乙酰基 - 半乳蛋白酶-2在粘合剂型O-糖基化学中的底物结合和催化中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

One of the dominant post-translational modifications in mammals is mucin-type (GalNAc-type) O-glycosylation initiated by polypeptide N -acetyl-galactosaminyltransferases (ppGalNAc-Ts), which is closely associated with many physiological and pathological conditions. An atomic-level understanding of the structural dynamics of one critical catalytic loop in ppGalNAc-Ts from an open to a closed state upon substrate binding, however, is still elusive. Here, by constructing a Markov state model based on extensive all-atom molecular dynamics (MD) simulations with an aggregated simulation time of ~20 μs, we reveal, at atomistic resolution, the key metastable states of the catalytic loop in ppGalNAc-T2 during its closing/opening dynamics after donor substrate (UDP–GalNAc) binding. The overall catalytic-loop closing motion is estimated to take place at a timescale of ~tens of μs, with the rate-limiting transition caused by some critical structural rearrangements within the catalytic loop region, coupled with the desolvation process. We find that the presence of UDP–GalNAc facilitates the formation of a stable interaction network with several nonloop residues (i.e., L204, V330, H145, and W331), which in turn promotes the loop closing. Moreover, the functional roles of several critical active-site residues were further evaluated through combining site-directed mutagenesis, high-performance liquid chromatography, MS/MS, and mutant MD simulations. It is intriguing to observe that the UDP–GalNAc binding and the following catalysis can tolerate all the tested loop-residue substitutions, some can even profoundly enhance the enzyme efficacy (i.e., H365A and F377A). More importantly, the catalytic loop is found to play a decisive role in regulating the glycosylation-site preferences. Our work provides the structural basis for the key regulatory factors that dictate the substrate loading and following catalysis during mucin-type O-glycosylation.
机译:哺乳动物中的主要翻译后修饰之一是由多肽 N-乙酰基 - 半乳氨基氨基丙烷酶(PpGalNAC-TS)引发的粘蛋白型(Galnac型)O-糖基化,其与许多生理和病理条件密切相关。然而,对PpGalNAC-Ts中的一种关键催化环的结构动态的原子水平理解仍然难以捉摸。这里,通过基于广泛的全原子分子动力学(MD)模拟的Markov状态模型,具有〜20μs的聚合模拟时间,我们在原子分辨率下揭示PpGalnac-T2中催化环的关键亚稳态其供体基质(UDP-Galnac)结合后的关闭/打开动力学。估计整体催化回路闭合动作估计在〜10μs的时间尺寸下进行,其催化回收区域内的一些临界结构重排引起的速率限制过渡,与降解过程相结合。我们发现UDP-Galnac的存在有助于形成具有几个非泊盐残基的稳定的相互作用网络(即,L204,V330,H145和W331),其又促进了环路闭合。此外,通过组合定点诱变,高性能液相色谱法,MS / MS和突变MD模拟进一步评估几种关键有效点残留物的功能作用。观察到UDP-GalNAc结合和以下催化可以耐受所有测试的环残基取代,有些可以深刻地增强酶功效(即,H365A和F377A)。更重要的是,发现催化回路在调节糖基化 - 位点偏好方面发挥着决定性作用。我们的工作为关键调节因子提供了结构依据,该因素在粘蛋白型O-糖基化过程中阐述了基材负荷和后催化。

著录项

  • 来源
    《ACS catalysis》 |2019年第11期|共15页
  • 作者单位

    Key Laboratory of Systems Biomedicine Shanghai Center for Systems Biomedicine Shanghai Jiao Tong University;

    Key Laboratory of Systems Biomedicine Shanghai Center for Systems Biomedicine Shanghai Jiao Tong University;

    Key Laboratory of Systems Biomedicine Shanghai Center for Systems Biomedicine Shanghai Jiao Tong University;

    Key Laboratory of Systems Biomedicine Shanghai Center for Systems Biomedicine Shanghai Jiao Tong University;

    Key Laboratory of Systems Biomedicine Shanghai Center for Systems Biomedicine Shanghai Jiao Tong University;

    Key Laboratory of Systems Biomedicine Shanghai Center for Systems Biomedicine Shanghai Jiao Tong University;

    Key Laboratory of Systems Biomedicine Shanghai Center for Systems Biomedicine Shanghai Jiao Tong University;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

    ppGalNAc-T2; catalytic loop; closing/opening dynamics; molecular dynamics simulations; Markov state model;

    机译:PpGalnac-T2;催化回路;关闭/打开动态;分子动力学模拟;马尔可夫状态模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号