首页> 外文期刊>ACS catalysis >Dual-Site-Mediated Hydrogenation Catalysis on Pd/NiO: Selective Biomass Transformation and Maintenance of Catalytic Activity at Low Pd Loading
【24h】

Dual-Site-Mediated Hydrogenation Catalysis on Pd/NiO: Selective Biomass Transformation and Maintenance of Catalytic Activity at Low Pd Loading

机译:PD / NIO的双位介导的氢化催化:低PD负载下的选择性生物质转化和催化活性的维持

获取原文
获取原文并翻译 | 示例
           

摘要

Creating a new chemical ecosystem based on platform chemicals derived from waste biomass has significant challenges: catalysts need to be able to convert these highly functionalized molecules to specific target chemicals and they need to be economical-not relying on large quantities of precious metals-and maintain activity over many cycles. Herein, we demonstrate how Pd/NiO is able to direct the selectivity of furfural hydrogenation and maintain performance at low Pd loading by a unique dual-site mechanism. Sol-immobilization was used to prepare 1 wt % Pd nanoparticles supported on NiO and TiO2, with the Pd/NiO catalyst showing enhanced activity with a significantly different selectivity profile; Pd/NiO favors tetrahydrofurfuryl alcohol (72%), whereas Pd/TiO2 produces furfuryl alcohol as the major product (68%). Density functional theory studies evidenced significant differences on the adsorption of furfural on both NiO and Pd surfaces. On the basis of this observation we hypothesized that the role of Pd was to dissociate hydrogen, with the NiO surface adsorbing furfural. This dual-site hydrogenation mechanism was supported by comparing the performance of 0.1 wt % Pd/NiO and 0.1 wt % Pd/TiO2. In this study, the 0.1 and 1 wt % Pd/NiO catalysts had comparable activities, whereas there was a 10-fold reduction in performance for 0.1 wt % Pd/TiO2. When TiO2 is used as the support, the Pd nanoparticles are responsible for both hydrogen dissociation and furfural adsorption and the activity is strongly correlated with the effective metal surface area. This work has significant implications for the upgrading of bioderived feedstocks, suggesting alternative ways for promoting selective transformations and reducing the reliance on precious metals.
机译:基于源自废物生物量的平台化学品创造新的化学生态系统具有重要挑战:催化剂需要能够将这些高官能化分子转化为特定的目标化学品,并且他们需要经济 - 不依赖大量贵金属 - 并维持在许多周期上的活动。在此,我们证明Pd / NiO如何能够通过独特的双位点机制将Pd / NiO指导糠醛氢化的选择性并保持低PD载荷的性能。使用溶胶 - 固定化在NiO和TiO 2上制备1wt%Pd纳米颗粒,Pd / NiO催化剂显示出具有显着不同选择性型材的增强活性; PD / NIO有利于四氢呋喃醇(72%),而Pd / TiO2将糠醇产生为主要产品(68%)。密度函数理论研究证明了对NIO和Pd表面的毛坯吸附的显着差异。在这种观察结果的基础上,我们假设Pd的作用是解离氢,NiO表面吸附糠醛。通过比较0.1wt%Pd / NiO和0.1wt%Pd / TiO 2的性能来支持该双位氢化机理。在该研究中,0.1和1wt%Pd / NiO催化剂具有可比的活性,而性能降低10倍,对于0.1wt%pd / tiO 2。当使用TiO 2作为载体时,Pd纳米颗粒负责氢解离和糠醛吸附,并且活性与有效金属表面积强烈地相关。这项工作对生物化原料升级具有重大影响,旨在促进选择性转化和降低贵金属依赖的替代方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号