首页> 外文期刊>ACS catalysis >Role of OH Intermediates during the Au Oxide Electro-Reduction at Low pH Elucidated by Electrochemical Surface-Enhanced Raman Spectroscopy and Implicit Solvent Density Functional Theory
【24h】

Role of OH Intermediates during the Au Oxide Electro-Reduction at Low pH Elucidated by Electrochemical Surface-Enhanced Raman Spectroscopy and Implicit Solvent Density Functional Theory

机译:OH中间体在低pH下通过电化学表面增强拉曼光谱和隐式溶剂密度函数理论在低pH期间的中间体在氧化物电解过程中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular understanding of the electrochemical oxidation of metals and the electro-reduction of metal oxides is of pivotal importance for the rational design of catalyst-based devices where metal(oxide) electrodes play a crucial role. Operando monitoring and reliable identification of reacting species, however, are challenging tasks because they require surface-molecular sensitive and specific experiments under reaction conditions and sophisticated theoretical calculations. The lack of molecular insight under operating conditions is largely due to the limited availability of operando tools and to date still hinders a quick technological advancement of electrocatalytic devices. Here, we present a combination of advanced density functional theory (DFT) calculations considering implicit solvent contributions and time-resolved electrochemical surface-enhanced Raman spectroscopy (EC-SERS) to identify short-lived reaction intermediates during the showcase electro-reduction of Au oxide (AuOx) in sulfuric acid over several tens of seconds. The EC-SER spectra provide evidence for temporary Au-OH formation and for the asynchronous adsorption of (bi)sulfate ions at the surface during the reduction process. Spectral intensity fluctuations indicate an OH/(bi)sulfate turnover period of 4 s. As such, the presented EC-SERS potential jump approach combined with implicit solvent DFT simulations allows us to propose a reaction mechanism and prove that short-lived Au-OH intermediates also play an active role during the AuOx electro-reduction in acidic media, implying their potential relevance also for other electrocatalytic systems operating at low pH, like metal corrosion, the oxidation of CO, HCOOH, and other small organic molecules, and the oxygen evolution reaction.
机译:用于金属电化学氧化的电化学氧化和金属氧化物的电解的分子理解对于金属(氧化物)电极发挥至关重要的作用的基于催化剂的装置的合理设计是关键的重要性。 操作道常监测和可靠的反应物种鉴定是具有挑战性的任务,因为它们需要在反应条件下和复杂的理论计算中的表面分子敏感和特异性实验。在操作条件下缺乏分子洞察力主要是由于手术机工具的可用性有限,迄今为止仍碍了电催化装置的快速技术进步。这里,考虑隐式溶剂贡献和时间分辨的电化学表面增强拉曼光谱(EC-SERS)来介绍先进的密度泛函理论(DFT)计算的组合,以识别展示壳体电解的短寿命的反应中间体(Auox)在硫酸中超过几十秒钟。 EC-SER光谱提供临时AU-OH形成的证据和在还原过程中表面的(BI)硫酸盐离子的异步吸附。光谱强度波动表明OH /(BI)硫酸盐周转周期为4 s。因此,所呈现的EC-SERS潜在跳转方法与隐式溶剂DFT模拟结合,使我们能够提出反应机制并证明短暂的AU-OH中间体在酸性介质的Auox电解过程中也发挥着积极作用,暗示它们的潜在相关性也适用于在低pH下操作的其他电催化系统,如金属腐蚀,CO,HCOOH等小有机分子的氧化和氧气进化反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号