...
首页> 外文期刊>ACS catalysis >Mechanistic Insights into the Bronsted Acid-Catalyzed Dehydration of beta-D-Glucose to 5-Hydroxymethylfurfural under Ambient and Subcritical Conditions
【24h】

Mechanistic Insights into the Bronsted Acid-Catalyzed Dehydration of beta-D-Glucose to 5-Hydroxymethylfurfural under Ambient and Subcritical Conditions

机译:在环境和亚临界条件下,机械洞察Beta-D-葡萄糖对5-羟甲基糠醛的脱水

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Conversion of biomass to fuels and other useful chemicals is one of the most active fields of research today. In this respect, dehydration of glucose to 5-hydroxymethylfurfural (HMF) has gained much attention recently. Carrying out this reaction with high efficiency in green solvents, especially in water, is a major challenge to overcome. In spite of several years of experimental and computational studies, the detailed mechanism of the conversion of glucose to HMF remains elusive. Detailed mechanistic understanding of this reaction can aid in the development of novel catalysts for carrying out the reaction in water. In addition, understanding the effects of reaction conditions such as temperature and pressure on the mechanism and kinetics of this reaction could provide additional information to optimize thermodynamic conditions for HMF production on an industrial scale, and thus, we study that here in detail. Our study is based on computational modeling of this chemical reaction in explicit water under different thermodynamic conditions using molecular dynamics simulations at the level of density functional theory. This work addresses the long-standing open questions on the mechanism and the effects of the thermodynamic conditions. Our simulations shed light on the critical steps for which a catalyst could be designed to improve the efficiency.
机译:将生物质转化为燃料和其他有用的化学品是今天最活跃的研究领域之一。在这方面,葡萄糖脱水至5-羟甲基糠(HMF)最近效应了很多关注。在绿色溶剂中进行这种反应,特别是在水中,是克服的主要挑战。尽管有几年的实验和计算研究,但葡萄糖转化为HMF的详细机制仍然是难以捉摸的。对该反应的详细机械理解可以帮助开发用于在水中进行反应的新型催化剂。此外,了解该反应机制和动力学的温度和压力等反应条件的影响可以提供额外的信息,以优化产业规模的HMF生产的热力学条件,从而详细研究。我们的研究基于在不同热力学条件下使用分子动力学模拟在密度函数理论水平下的明确水中的这种化学反应的计算模拟。这项工作解决了关于机制的长期开放问题和热力学条件的影响。我们的仿真阐明了催化剂可以设计催化剂以提高效率的关键步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号