首页> 外文期刊>AJNR. American journal of neuroradiology >Accurate Patient-Specific Machine Learning Models of Glioblastoma Invasion Using Transfer Learning
【24h】

Accurate Patient-Specific Machine Learning Models of Glioblastoma Invasion Using Transfer Learning

机译:准确的患者专用机器学习模型胶质母细胞瘤侵入使用转移学习

获取原文
获取原文并翻译 | 示例
           

摘要

BACKGROUND AND PURPOSE: MR imaging-based modeling of tumor cell density can substantially improve targeted treatment of glioblastoma. Unfortunately, interpatient variability limits the predictive ability of many modeling approaches. We present a transfer learning method that generates individualized patient models, grounded in the wealth of population data, while also detecting and adjusting for interpatient variabilities based on each patient's own histologic data. MATERIALS AND METHODS: We recruited patients with primary glioblastoma undergoing image-guided biopsies and preoperative imaging, including contrast-enhanced MR imaging, dynamic susceptibility contrast MR imaging, and diffusion tensor imaging. We calculated relative cerebral blood volume from DSC-MR imaging and mean diffusivity and fractional anisotropy from DTI. Following image coregistration, we assessed tumor cell density for each biopsy and identified corresponding localized MR imaging measurements. We then explored a range of univariate and multivariate predictive models of tumor cell density based on MR imaging measurements in a generalized one-model-fits-all approach. We then implemented both univariate and multivariate individualized transfer learning predictive models, which harness the available population-level data but allow individual variability in their predictions. Finally, we compared Pearson correlation coefficients and mean absolute error between the individualized transfer learning and generalized one-model-fits-all models. RESULTS: Tumor cell density significantly correlated with relative CBV (r = 0.33, P < .001), and T1-weighted postcontrast (r = 0.36, P < .001) on univariate analysis after correcting for multiple comparisons. With single-variable modeling (using relative CBV), transfer learning increased predictive performance (r = 0.53, mean absolute error = 15.19%) compared with one-model-fits-all (r = 0.27, mean absolute error = 17.79%). With multivariate modeling, transfer learning further improved performance (r = 0.88, mean absolute error = 5.66%) compared with one-model-fits-all (r = 0.39, mean absolute error = 16.55%). CONCLUSIONS: Transfer learning significantly improves predictive modeling performance for quantifying tumor cell density in glioblastoma.
机译:背景论:基于MR成像的肿瘤细胞密度建模可以大大改善胶质母细胞瘤的靶向治疗。遗憾的是,内腔可变性限制了许多建模方法的预测能力。我们介绍了一种转移学习方法,产生个性化患者模型,基于每个患者自己的组织学数据检测和调整内部变量的介入和调整。材料和方法:我们招募了初级胶质母细胞瘤的患者接受了图像引导的活组织检查和术前成像,包括对比增强的MR成像,动态敏感性对比MR成像和扩散张量成像。我们从DSC-MR成像和来自DTI的平均扩散性和分数各向异性的相对脑血容量计算。在图像核心转化率之后,我们评估了每个活检的肿瘤细胞密度,并确定了相应的局部MR成像测量。然后,我们基于推广的一模型 - 所有方法的MR成像测量探索了一系列单变量和多变量预测模型的肿瘤细胞密度。然后,我们实施了单变量和多变量个性化转移学习预测模型,它利用了可用的人口级数据,但允许其预测中的个人变异性。最后,我们比较了Pearson相关系数,并且在个性化转移学习与广义的单模型之间的绝对误差。结果:肿瘤细胞密度与相对CBV(r = 0.33,p <.001)显着相关,以及在校正多元比较后的单变量分析上的T1加权后(R = 0.36,P <.001)。通过单变模拟(使用相对CBV),转移学习与单模配合(R = 0.27,平均绝对误差= 17.79%)相比,转移学习增加了预测性能(R =​​ 0.53,平均绝对误差= 15.19%)。通过多变量建模,转移学习进一步提高了性能(r = 0.88,平均绝对误差= 5.66%)与单模配合相比(r = 0.39,平均绝对误差= 16.55%)。结论:转移学习显着提高了定量胶质母细胞瘤中肿瘤细胞密度的预测性建模性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号