首页> 外文期刊>Crystal growth & design >Obtaining Synthon Modularity in Ternary Cocrystals with Hydrogen Bonds and Halogen Bonds
【24h】

Obtaining Synthon Modularity in Ternary Cocrystals with Hydrogen Bonds and Halogen Bonds

机译:在具有氢键和卤素键的三元共晶体中获得合成子模量

获取原文
获取原文并翻译 | 示例
           

摘要

Design of ternary cocrystals based on synthon modularity is described. The strategy is based on the idea of extending synthon modularity in binary cocrystals of 4-hydroxybenzamide:dicarboxylic acids and 4-bromobenzamide:dicarboxylic acids. If a system contains an amide group along with other functional groups, one of which is a carboxylic acid group, the amide associates preferentially with the carboxylic acid group to form an acid-amide heterosynthon. If the amide and the acid groups are in different molecules, a higher multicomponent molecular crystal is obtained. This is a stable pattern that can be used to increase the number of components from two to three in a multicomponent system. Accordingly, noncovalent interactions are controlled in the design of ternary cocrystals in a more predictable manner. If a single component crystal with the amide-amide dimer is considered, modularity is retained even after formation of a binary cocrystal with acid-amide dimers. Similarly, when third component halogen atom containing molecules are introduced into these binary cocrystals, modularity is still retained. Here, we use acid-amide and Br/I??? O_2N supramolecular synthons to obtain modularity in nine ternary cocrystals. The acid-amide heterosynthon is robust to all the nine cocrystals. Heterosynthons may assist ternary cocrystal formation when there is a high solubility difference between the coformers. For a successful crystal engineering strategy for ternary cocrystals, one must consider the synthon itself and factors like shape and size of the component molecules, as well as the solubilities of the compounds.
机译:描述了基于合成子模块的三元共晶设计。该策略基于扩展4-羟基苯甲酰胺:二羧酸和4-溴苯甲酰胺:二羧酸的二元共晶体中合成子模块性的想法。如果系统包含酰胺基以及其他官能团(其中一个是羧酸基),则酰胺优先与羧酸基团缔合,形成酸-酰胺杂合子。如果酰胺和酸基团位于不同的分子中,则可获得更高的多组分分子晶体。这是一种稳定的模式,可用于将多组件系统中的组件数量从两个增加到三个。因此,在三元共晶体的设计中以更可预测的方式控制非共价相互作用。如果考虑具有酰胺-酰胺二聚体的单组分晶体,则即使在形成具有酰胺-酰胺二聚体的二元共晶体之后,仍保持模块性。类似地,当将含第三组分卤素原子的分子引入这些二元共晶体中时,仍保持模块性。在这里,我们使用酰胺和Br / I? O_2N超分子合成子在九个三元共晶体中获得模块化。酸-酰胺杂合子对所有九种共晶体均具有稳健性。当共形成剂之间存在高溶解度差异时,异同子可能有助于三元共晶体的形成。对于一种成功的三元共晶体晶体工程策略,必须考虑合成子本身以及诸如组成分子的形状和大小以及化合物的溶解度等因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号