首页> 外文期刊>ACS Sustainable Chemistry & Engineering >Facile Preparation of an Excellent Mechanical Property Electroactive Biopolymer-Based Conductive Composite Film and Self-Enhancing Cellulose Hydrogel to Construct a High-Performance Wearable Supercapacitor
【24h】

Facile Preparation of an Excellent Mechanical Property Electroactive Biopolymer-Based Conductive Composite Film and Self-Enhancing Cellulose Hydrogel to Construct a High-Performance Wearable Supercapacitor

机译:容易制备优异的机械性能电活性生物聚合物的导电复合膜和自增强纤维素水凝胶,构建高性能可穿戴超级电容器

获取原文
获取原文并翻译 | 示例
           

摘要

Wearable supercapacitors, as one of the most important power supplies for wearable electronics, require excellent flexibility and deformability and a structure that is not easily delaminated. In this work, a robust ligninsulfonate/single-wall carbon nanotube film/holey reduced graphene oxide (Lig/SWCNT/HrGO) film with excellent tensile strength (121.8 MPa) and flexibility has been prepared via a filtration process followed by a hydrothermal treatment. During the filtration process, the SWCNT and small-size holey graphene oxide (HGO) can form a multilayer-like interconnected structure, and a part of HGO with a large specific surface area intersperses in the SWCNT network. HGO can be further reduced to HrGO, and the HrGO, Lig, and SWCNT can combine tightly to generate a compact multilayer-like structure during the hydrothermal process. High-strength, flexible, porous cellulose hydrogel (9.56 MPa) has been fabricated via a self-enhancing method through phase inversion of microcrystalline cellulose and partially dissolved bacterial cellulose mixture dispersion. A wearable supercapacitor is assembled by the Lig/SWCNT/HrGO films and self-enhancing cellulose hydrogel, which exhibits excellent tensile strength (112.3 MPa), areal capacitance (1121 mF cm(-2)), and energy density (77.8 mu Wh cm(-2)). More importantly, the areal capacitance shows a nearly linear increase with an increase in the mass of the film electrode. When the film electrode mass reaches up to 16.5 mg cm(-2), the wearable supercapacitor delivers an ultrahigh areal capacitance of 4110 mF cm(-2) and an energy density of 285.4 mu Wh cm(-2). Remarkably, the wearable supercapacitor can sustain many types of arbitrary deformation and this outstanding flexibility is attributed to the strong interaction between wood-derived cellulose and Lig, which prevents the delamination of the electrodes and the separator. This work provides a facile approach for the preparation of a biopolymer-based, multilayer-like structure film and a self-enhancing method to obtain high-strength cellulose hydrogel, thus developing a biomimetic high-performance wearable energy storage device.
机译:可穿戴超级电容器,作为可穿戴电子设备最重要的电源之一,需要出色的灵活性和可变形性,并且结构不易分解。在这项工作中,通过过滤过程制备具有优异的拉伸强度(121.8MPa)和柔韧性的鲁棒木质素磺酸盐/单壁碳纳米管/孔孔的较强的木质素磺酸盐/单壁碳纳米管膜/霍波氧化石墨烯膜(Lig / SWCNT / HRGO)膜和柔韧性。在过滤过程中,SWCNT和小尺寸的氧化石墨烯氧化物(HGO)可以形成多层式相互连接的结构,并且在SWCNT网络中具有大的比表面积孔的一部分HgO。 HgO可以进一步减少到HRGO,HRGO,LIG和SWCNT可以在水热过程中紧密结合以产生紧凑的多层结构。通过微晶纤维素和部分溶解的细菌纤维素混合物分散体通过自增强方法制造高强度,柔韧,多孔纤维素水凝胶(9.56MPa)。可穿戴超级电容器由Lig / SWCNT / HRGO膜组装和自增强纤维素水凝胶,其表现出优异的拉伸强度(112.3MPa),面积电容(1121mF cm(-2))和能量密度(77.8μm (-2))。更重要的是,由于薄膜电极的质量增加,所以近线电容显示出几乎线性的增加。当薄膜电极质量达到高达16.5mg cm(-2)时,可穿戴超级电容器可提供4110mF cm(-2)的超高面积电容,并且能量密度为285.4μm(-2)。值得注意的是,可穿戴超级电容器可以维持许多类型的任意变形,并且这种突出的灵活性归因于木材衍生的纤维素和LIG之间的强相互作用,这防止了电极和隔板的分层。该工作提供了制备基于生物聚合物的多层结构膜的容易方法和自增强方法,以获得高强度纤维素水凝胶,从而开发仿生高性能可穿戴能量存储装置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号