...
首页> 外文期刊>ACS Sustainable Chemistry & Engineering >Novel and Highly Active Potassium Niobate-Based Photocatalyst for Dramatically Enhanced Hydrogen Production
【24h】

Novel and Highly Active Potassium Niobate-Based Photocatalyst for Dramatically Enhanced Hydrogen Production

机译:基于新型和高活性的铌酸钾的光催化剂,用于显着增强氢气产生

获取原文
获取原文并翻译 | 示例
           

摘要

A novel and highly active photocatalytic material, self-doped potassium niobate composite microflowers stimulated by noble-metal-free copper nanoparticles (Cu/K4Nb6O17), was achieved. The composition and structure of the composite microflowers were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS). The results showed that Cu nanoparticles were evenly and closely loaded onto the flower slices of the composite microflowers. As testified by XPS, electrochemical impedance spectrum, and fluorescence spectrum, the presence of Cu in K4Nb6O17 microflowers quickened the self-doping of Nb4+, enhanced light absorption and the unsaturated defects as active sites, and improved the separation efficiency of electron/hole pairs, which led to excellent photocatalytic activity for hydrogen evolution over the composite microflowers. Subsequently, the optimal hydrogen generation rate for the composite microflowers was about 9 times higher than that of pure K4Nb6O17 microflowers under the same conditions. Moreover, the composite photocatalyst was stable and easy to be recycled. The results demonstrated that the construction of the special heterojunction by facile interfacial modification is a promising strategy to efficiently enhance photocatalytic performance of semiconductor photo catalysts.
机译:通过一种新的和高活性的光催化材料,通过无金属铜纳米颗粒(Cu / K4NB6O17)刺激的自掺杂铌酸钾复合微移络剂。复合微射线的组成和结构的特征在于X射线衍射(XRD),高分辨率透射电子显微镜(HRTEM)和X射线光电子谱(XPS)。结果表明,Cu纳米颗粒均匀并紧密地装载到复合微流贷款的花切片上。如XPS,电化学阻抗谱和荧光光谱所证明的,K4NB6O17微射线中Cu的存在加速了Nb4 +的自掺杂,增强光吸收和不饱和缺陷作为活性位点,提高了电子/孔对的分离效率,这导致了复合微流贷款的氢涂膜优异的光催化活性。随后,在相同条件下,复合微射线的最佳氢生成率约为高于纯K4NB6O17微射线的9倍。此外,复合光催化剂稳定且易于再循环。结果表明,通过容易界面改性构建特殊的异质结是有效增强半导体光催化剂的光催化性能的有希望的策略。

著录项

  • 来源
  • 作者单位

    Shanghai Inst Technol Sch Chem &

    Environm Engn Ctr Graphene Res 100 Haiquan Rd Shanghai 201418 Peoples R China;

    Shanghai Inst Technol Sch Chem &

    Environm Engn Ctr Graphene Res 100 Haiquan Rd Shanghai 201418 Peoples R China;

    Shanghai Inst Technol Sch Chem &

    Environm Engn Ctr Graphene Res 100 Haiquan Rd Shanghai 201418 Peoples R China;

    Shanghai Inst Technol Sch Chem &

    Environm Engn Ctr Graphene Res 100 Haiquan Rd Shanghai 201418 Peoples R China;

    Jilin Univ Coll Chem State Key Lab Inorgan Synth &

    Preparat Chem Changchun 130012 Jilin Peoples R China;

    Shanghai Inst Technol Sch Chem &

    Environm Engn Ctr Graphene Res 100 Haiquan Rd Shanghai 201418 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    Nanocomposite; Interfacial modification; Electron transfer; Photocatalytic hydrogen production; Mechanism;

    机译:纳米复合材料;界面改性;电子转移;光催化氢气产生;机制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号