首页> 外文期刊>Crystal growth & design >Configurable Compliant Substrates for SiGe Nanomembrane Fabrication
【24h】

Configurable Compliant Substrates for SiGe Nanomembrane Fabrication

机译:用于SiGe纳米膜制造的可配置兼容基板

获取原文
获取原文并翻译 | 示例
       

摘要

The aim of this work is to give quantitative guides for the fabrication of strain-engineered SiGe epitaxial nanomembranes using a compliant substrate. We theoretically determine the effect of the elastic properties (softness and strain level) of a compliant substrate on the morphological evolution of an epilayer. The experimental system under investigation is the SiGe on Si(001) model system, which develops an Asaro-Tiller-Grinfeld (ATG) growth instability or misfit dislocations for large epitaxial stresses. The compliant substrate is a porous silicon layer whose softness and strain level can be adjusted by varying the density of pores and the annealing conditions. The softness and strain level of the compliant substrate are analyzed independently. We show that the softness of the compliant substrate produces a significant enhancement of the growth instability that normally develops in SiGe/Si systems. We rationalize the counterintuitive and commonly misunderstood instability enhancement by considering the elastic energy in the substrate after deposition of an epilayer. A fundamental result to mention is that in the experimentally relevant system consisting of Si substrate/compliant pseudosubstrate/Si buffer layer/epitaxial layer, a major parameter that controls the instability development is the thickness of the Si buffer layer. For a soft compliant substrate (typically with a Youngs modulus ten times smaller than silicon), a thin buffer layer (20 nm thick) suppresses the compliant effect. This is an important result for experimental studies, which commonly neglect the influence of the buffer layer. We quantify this effect and give an experimental proof, which confirms the theoretical result. We then consider the effect of the strain level of the compliant substrate. We give evidence that, in standard experimental situations, a tensilely strained compliant substrate could kinetically inhibit the development of the instability and could also delay the nucleation of misfit dislocations. The theoretical results are confirmed by exemplary experimental results using a tensilely strained porous silicon substrate obtained by annealing in specific conditions (HT-PSi). Both the inhibition of the ATG growth instability and the delay of the nucleation of misfit dislocations are evidenced for different SiGe alloy concentrations in good agreement with theoretical models. These results strongly highlight the importance of the HT-PSi as a configurable compliant substrate not only for the fabrication of SiGe nanomembranes totally flat and free of dislocation but also for the heterogeneous growth of various systems on silicon. They also give a basic understanding of the elastic mechanisms and the universal rules for producing generic configurable compliant substrates.
机译:这项工作的目的是为使用顺应性基板制造应变工程化的SiGe外延纳米膜提供定量指导。我们从理论上确定顺应性基材的弹性特性(柔软度和应变水平)对外延层形态演变的影响。正在研究的实验系统是SiGe on Si(001)模型系统,该系统开发出Asaro-Tiller-Grinfeld(ATG)生长不稳定性或大外延应力失配位错。顺应性基板是多孔硅层,其柔软性和应变水平可通过改变孔的密度和退火条件来调节。独立分析柔顺性基材的柔软度和应变水平。我们表明,顺应性基板的柔软性会显着增强通常在SiGe / Si系统中发展的生长不稳定性。通过考虑在沉积外延层后基板中的弹性能,我们合理化了反常理和通常被误解的不稳定性增强。要提到的基本结果是,在由硅衬底/顺应性伪衬底/硅缓冲层/外延层组成的实验相关系统中,控制不稳定性发展的主要参数是硅缓冲层的厚度。对于柔软的柔性基板(通常具有比硅小十倍的杨氏模量),薄的缓冲层(20 nm厚)会抑制柔性效果。对于实验研究而言,这是重要的结果,而实验研究通常忽略了缓冲层的影响。我们量化这种效果并给出实验证明,这证实了理论结果。然后,我们考虑柔性基板的应变水平的影响。我们提供的证据表明,在标准实验情况下,拉伸应变的顺应性基材可以动力学抑制不稳定性的发展,也可以延迟错配位错的形核。通过使用在特定条件下退火(HT-PSi)获得的拉伸应变多孔硅基板的示例性实验结果,证实了理论结果。对于不同浓度的SiGe合金,都证明了ATG生长不稳定性的抑制和错配位错成核的延迟都与理论模型相吻合。这些结果强烈强调了HT-PSi作为可配置的顺应性基板的重要性,不仅对于完全平坦且无位错的SiGe纳米膜的制造,而且对于硅上各种系统的异质生长。他们还对生产通用可配置柔性基板的弹性机制和通用规则提供了基本的了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号