...
首页> 外文期刊>Advanced materials interfaces >A Single-Phase, All-Solid-State Sodium Battery Using Na_(3?x)V_(2?x)Zr_x(PO_4)_3 as the Cathode, Anode, and Electrolyte
【24h】

A Single-Phase, All-Solid-State Sodium Battery Using Na_(3?x)V_(2?x)Zr_x(PO_4)_3 as the Cathode, Anode, and Electrolyte

机译:使用NA_(3×x)v_(2≤x)zr_x(po_4)_3作为阴极,阳极和电解质的单相,全固态钠电池

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Many studies of all-solid-state lithium-ion batteries have been performed due to the high energy density and small radii of the lithium ion.[1–4] However, the much lower price of sodium compared with lithium gives the former a large advantage; therefore, there is a compelling reason to study sodium-ion batteries.[ 5,6] Although there have been some reports of all-solidstate sodium-ion batteries using a sulfide-based electrolyte,[6–9] there have been only a limited number of publications regarding all-solid-state sodium-ion batteries incorporating inorganic oxide-based solid electrolytes, and these reports involve high temperature operation (above 473 K).[10–12] One challenge associated with the fabrication of all-solid-state sodium-ion batteries is the interfacial resistance between the electrolyte and the electrode. In order to ensure good contact between the electrode and electrolyte, high temperature sintering is typically employed, particularly in the case of an oxide-based solid electrolyte. However, this process potentially brings a high-resistive layer between the electrode and electrolyte as a consequence of reactions induced in the various materials.[ 1,13] The large interfacial resistance lowers the capability of the solid-state battery even if the bulk conductivity of the electrolyte is very high.[8,14–16] The sodium super ionic conductor(NASICON)-related phosphate, Na_3V_2(PO_4)_3, is a promising electroactive material, and can potentially serve as the anode and cathode in a battery, based on its redox reactions at low potentials (V~(3+)/V~(2+)) and high potentials (V~(3+)/V~(4+)), respectively.[ 10,17] Noguchi et al. first reported a symmetrical “all- NASICON cell,” using Na_3V_2(PO_4)_3 as the active material and Na_3Zr_2Si_2PO_(12) as the solid electrolyte and operating at room temperature.[10] However, in spite of this identical crystal structure, this device still has a high-resistive interface because the Na_3V_2(PO_4)_3 must be attached via relatively low temperature (973 K) calcination (to prevent the formation of a reaction layer that is otherwise generated above 1073 K).
机译:由于锂离子的高能量密度和小半径而进行了许多对全固态锂离子电池的研究。然而,与锂相比,钠的钠价格低得多,给前了一个大优势;因此,研究了钠离子电池的令人信服的原因。[5,6]虽然使用硫化硫化物电解质的全固体钠离子电池已经存在一些报道,但是只有一个有限的关于包含无机氧化物基固体电解质的全固态钠离子电池的有限的出版物,这些报告涉及高温操作(高于473 k)。[10-12]与全固体制造相关的一个挑战 - 钠离子电池是电解质和电极之间的界面抗性。为了确保电极和电解质之间的良好接触,通常使用高温烧结,特别是在氧化物基固体电解质的情况下。然而,由于在各种材料中诱导的反应,该过程可能在电极和电解质之间产生高电阻层。[1,13]即使散装电导率也会降低固态电池的大界面电阻即使是固态电池的能力电解质非常高。[8,14-16]钠超离子导体(NASICON) - 相关的磷酸盐,Na_3V_2(PO_4)_3是一个有希望的电活性材料,并且可能用作电池中的阳极和阴极,基于其低电位的氧化还原反应(V〜(3 +)/ V〜(2+))和高电位(V〜(3 +)/ V〜(4+))。[10,17] noguchi等。首先报道了一种对称的“全鼻细胞,”使用Na_3V_2(PO_4)_3作为活性材料和Na_3ZR_2SI_2PO_(12)作为固体电解质并在室温下操作。[10]然而,尽管存在这种相同的晶体结构,但该装置仍然具有高电阻界面,因为NA_3V_2(PO_4)_3必须通过相对低的温度(973 k)煅烧附着(以防止形成反应层产生在1073 k以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号