首页> 外文期刊>Acta Mechanica >Mixed convolved action principles in linear continuum dynamics
【24h】

Mixed convolved action principles in linear continuum dynamics

机译:线性连续动力学中的混合卷积作用原理

获取原文
获取原文并翻译 | 示例
           

摘要

The paper begins with an overview of several of the classical integral formulations of elastodynamics, which highlights the natural appearance of temporal convolutions in the reciprocal theorem for such problems. This leads first to the formulation of a principle of virtual convolved action, as an extension of the principle of virtual work to dynamical problems. Then, to overcome the key shortcomings of Hamilton's principle, the concept of mixed convolved action is developed for linear dynamical problems within the context of continuum solid mechanics. This new approach is broadly applicable to both reversible and irreversible phenomena without the need for special treatments, such as the artificial definition of Rayleigh dissipation functionals. The focus here is on linear elastic and viscoelastic media, which in the latter case is represented by classical Kelvin-Voigt and Maxwell models. Remarkably, for each problem type, the stationarity of the mixed convolved action provides not only the governing partial differential equations, but also the specified boundary and initial conditions, as its Euler-Lagrange equations. Thus, the entire initial/boundary value problem definition is encapsulated in a scalar mixed convolved action functional written in terms of displacements and stress impulses. The resulting formulations possess an elegant structure that provides a versatile framework for the development of novel computational methods, involving finite element representations in both space and time. We present perhaps the simplest approach by employing linear three-node triangular elements for two-dimensional analysis, along with linear shape functions over the temporal domain. Numerical examples are included to verify the formulation and to explore concepts of stress wave attenuation.
机译:本文首先概述了几种经典的弹性动力学积分公式,其中强调了此类问题的倒易定理中时间卷积的自然出现。这首先导致了虚拟卷积动作原理的拟定,作为虚拟工作原理到动态问题的扩展。然后,为了克服汉密尔顿原理的关键缺点,在连续固体力学的背景下,针对线性动力学问题提出了混合卷积作用的概念。这种新方法广泛适用于可逆和不可逆现象,而无需进行特殊处理,例如人为定义瑞利耗散函数。这里的重点是线性弹性和粘弹性介质,在后一种情况下,用经典的Kelvin-Voigt和Maxwell模型表示。值得注意的是,对于每种问题类型,混合卷积动作的平稳性不仅提供了主导的偏微分方程,而且还提供了特定的边界条件和初始条件,作为其Euler-Lagrange方程。因此,整个初始/边界值问题定义被封装在标量混合卷积动作函数中,该函数按位移和应力脉冲编写。所得的配方具有优雅的结构,为开发新颖的计算方法提供了通用的框架,涉及时空有限元表示。通过采用线性三节点三角形元素进行二维分析以及时间域上的线性形状函数,我们提出了也许是最简单的方法。包括数值示例,以验证公式并探索应力波衰减的概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号