...
首页> 外文期刊>Acta biomaterialia >Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering
【24h】

Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering

机译:用薄层胶结微体系结构骨组织工程疲劳钛支架的疲劳行为

获取原文
获取原文并翻译 | 示例

摘要

Selective laser melting (SLM) has enabled the production of porous titanium structures with biological and mechanical properties that mimic bone for orthopedic applications. These porous structures have a reduced effective stiffness which leads to improved mechanotransduction between the implant and bone. Triply periodic minimal surfaces (TMPS), specifically the sheet-based gyroid structures, have improved compressive fatigue resistance due lack of stress concentrations. Sheet-based gyroid microarchitectures also have high surface area, permeability, and zero mean curvature. This study examines the effects of the gyroid microarchitectural design in parallel with SLM parameters on structure and function of as-built titanium alloy (Ti6Al4V ELI) scaffolds. Scaffold design was varied by varying unit cell size and wall thickness to produce scaffolds with porosity within the range of trabecular bone (50–90%). Manufacturer’s default and refined laser parameters were used to examine the effect of input energy density on mechanical properties. Scaffolds exhibited a stretching-dominated deformation behavior under both compressive and tensile loading, and porosity dependent stiffness and strength. Internal void defects were observed within the walls of the gyroids structure, serving as sites for crack initiation leading to failure. Refinement of laser parameters resulted in increased compressive and tensile fatigue behavior, particularly for thicker walled gyroid microarchitectures, while thinner walls showed no significant change. The observed properties of as-built gyroid sheet microarchitectures indicates that these structures have potential for use in bone engineering applications. Furthermore, these results highlight the importance of parallel design and processing optimization for complex sheet-based porous structures produced via SLM.
机译:选择性激光熔化(SLM)使多孔钛结构的生产具有用于模拟骨骼的生物和机械性能,用于整形外科应用。这些多孔结构具有降低的有效刚度,这导致植入物和骨之间的机电调整。 Threvy周期性的最小表面(TMP),特别是基于片材的陀螺结构,具有改善的抗压疲劳抗性缺乏应力浓度。基于片材的陀螺微体系结构也具有高表面积,渗透率和零平均曲率。本研究介绍了陀螺微体建筑设计与SLM参数平行的结构和作用钛合金(Ti6Al4V Eli)支架的结构和功能。通过不同的单位电池尺寸和壁厚改变脚手架设计,以在小梁骨范围内产生具有孔隙率的支架(50-90%)。制造商的默认和精制激光参数用于检查输入能量密度对机械性能的影响。支架在压缩和拉伸载荷和孔隙依赖性刚度和强度下表现出拉伸标准的变形行为。在陀螺结构的壁内观察到内部空隙缺陷,用作裂纹启动的部位导致失败。激光参数的改进导致压缩和拉伸疲劳行为增加,特别是对于较厚的壁陀螺微体系结构,而较薄的壁显示没有显着变化。所观察到的陀螺纱线板微体系结构表明这些结构具有骨工程应用的可能性。此外,这些结果突出了通过SLM产生的复杂薄片基多孔结构的平行设计和处理优化的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号