首页> 外文期刊>Bioelectrochemistry >Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells
【24h】

Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells

机译:阳极偏振对芍药氏素/石墨毡微生物燃料电池生物膜形成和电子转移的影响

获取原文
获取原文并翻译 | 示例
           

摘要

In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode, The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and biological parameters. Specifically, the application of a specific potential at the bioanode has been shown to stimulate the formation of an electroactive biofilm, but the underlying mechanisms remain poorly understood. In this study, we have investigated the effect of an applied potential on the formation and electroactivity of biofilms established by Shewanella oneidensis bacteria on graphite felt electrodes in single- and double-chamber reactor configurations in oxic conditions. Using amperometry, cyclic voltammetry, and OCP/Power/Polarization curves techniques, we showed that a potential ranging between -0.3 V and +0.5 V (vs. Ag/AgCl/KCl sat.) and its converse application to a couple of electrodes leads to different electrochemical behaviors, anodic currents and biofilm architectures. For example, when the bacteria were confined in the anodic compartment of a double-chamber cell, a negative applied potential (-0.3 V) at the bioanode favors a mediated electron transfer correlated with the progressive formation of a biofilm that fills the felt porosity and bridges the graphite fibers. In contrast, a positive applied potential (+ 0.3 V) at the bioanode stimulates a direct electron transfer resulting in the fast-bacterial colonization of the fibers only. These results provide significant insight for the understanding of the complex bacteria-electrode interactions in microbial fuel cells. (C) 2017 Elsevier B.V. All rights reserved.
机译:在微生物燃料电池中,通过将电极转移到电极的低级有机体产生电子的细菌劣化,从细菌的性质和效率通过几种化学,物理和生物学参数来确定发电。通过几种化学,物理和生物学参数来确定电子转移的性质和效率。具体地,已经显示了在生物潮汐下施加特定潜力以刺激电活性生物膜的形成,但是潜在机制仍然难以理解。在这项研究中,我们研究了应用潜力对由雪纳仑二世肌细菌在石墨毡电极中建立的生物膜形成和电分子的影响,在石墨毡电极中的单一和双室反应器构造中的氧化物条件下。使用安培测定法,循环伏安法和OCP /功率/偏振曲线技术,我们表明--0.3 V和+ 0.5 V(与AG / AGCL / KCL饱和)的潜在范围及其对几个电极引线的逆用应用不同的电化学行为,阳极电流和生物膜架构。例如,当细菌被限制在双室电池的阳极隔室中时,生物沸秒处的负施加电位(-0.3V)有利于介导的电子传递与填充毡孔隙率的生物膜的渐进式形成相关的介导的电子传递桥接石墨纤维。相反,生物潮汐处的正施加电位(+ 0.3V)刺激了直接电子转移,从而产生了纤维的快速细菌定植。这些结果为了解微生物燃料电池中的复杂细菌电极相互作用提供了重要的见解。 (c)2017 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号