首页> 外文期刊>Cryogenics >The unified strain and temperature scaling law for the pinning force density of bronze-route Nb_3Sn wires in high magnetic fields
【24h】

The unified strain and temperature scaling law for the pinning force density of bronze-route Nb_3Sn wires in high magnetic fields

机译:强磁场中青铜布线Nb_3Sn线钉扎力密度的统一应变和温度标度律

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Detailed measurements of the critical current density (J_c) of a bronze-route niobium-tin wire are presented for magnetic fields (B) up to 15 T as a function of temperature (T) from 6 K up to 16K in the strain (epsilon) range between -0.7 percent and + 0.7 percent. The data for this technological wire are described by a unified strain and temperature scaling law for the pinning force density of the form F_p(B, T, epsilon) = J_c X B = A(epsilon)[B_c2~*(T, epsilon)]~n b~p(1-b)~q, where A(epsilon) is a function of strain alone, B_c2~* is the effective upper critical field at which F_p extrapolates to zero, b = B/B_c2~* is the reduced magnetic field and n, p and q are constants. It is demonstrated that were A(epsilon)(B_c2~*)~n replaced by F(T)(B_c2~*)~m where F(T) is a function of temperature alone, the strain index m is a strong function of temperature and strain, and in high compression m = n. The effective upper critical field can be parameterized using the expression B_c2~*(T, epsilon) = B_c2~* (0, epsilon) (l - (T/T_c~*(epsilon))~v), where v is a constant and T_c~*(epsilon) is the effective critical temperature at which B_c2~* at a given strain extrapolates to zero. The strain dependence of the ratio B_c2~* (0, epsilon) / T_c~*(epsilon) and the slope (- partial deriv B_c2~* (T, epsilon) / partial deriv T)_(T = T_c~*(epsilon)) is reported. The data presented are useful for cryocooled high field magnets and for identifying the mechanisms that determine J_c in niobium-tin superconducting wires.
机译:给出了青铜布线铌锡线的临界电流密度(J_c)的详细测量值,该值是应变(ε)中从6 K到16K的温度(T)随温度(T)升高到15 T的磁场(B) )介于-0.7%和+ 0.7%之间。该工艺线的数据由统一的应变和温度缩放定律描述,形式为F_p(B,T,epsilon)= J_c XB = A(epsilon)[B_c2〜*(T,epsilon)] 〜nb〜p(1-b)〜q,其中A(ε)仅是应变的函数,B_c2〜*是F_p外推为零的有效上临界场,b = B / B_c2〜*等于磁场和n,p和q是常数。结果表明,用F(T)(B_c2〜*)〜m代替A(ε)(B_c2〜*)〜n,其中F(T)仅是温度的函数,应变指数m是强的函数。温度和应变,在高压缩下m = n。可以使用表达式B_c2〜*(T,epsilon)= B_c2〜*(0,epsilon)(l-(T / T_c〜*(epsilon))〜v)来对有效的上临界场进行参数化,其中v是一个常数T_c〜*(ε)是在给定应变下B_c2〜*外推至零的有效临界温度。比值B_c2〜*(0,epsilon)/ T_c〜*(epsilon)和斜率(-偏导B_c2〜*(T,epsilon)/偏导T)_(T = T_c〜*(epsilon) ))报告。所提供的数据对于低温冷却的高磁场磁体以及确定确定铌锡超导线材中J_c的机制很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号