首页> 外文OA文献 >Spectroscopic Determinations Of Magnetic Fields, Electron Temperatures, And Electron Densities In Single Wire Aluminum Plasmas
【2h】

Spectroscopic Determinations Of Magnetic Fields, Electron Temperatures, And Electron Densities In Single Wire Aluminum Plasmas

机译:光谱测定单线铝等离子体中的磁场,电子温度和电子密度

摘要

This dissertation provides a detailed determination of the visible emission spectra and plasma parameters of an exploding single aluminum (Al) wire while addressing the applicability of a new spectroscopic measurement technique to measure magnetic fields (B) in dense plasmas, where magnetic field measurements were previously unobtainable. Through the use of this new technique, hereafter called "Zeeman Broadening", there was evidence for magnetic fields in the spectra and a measurement was made. The Zeeman Broadening technique was first proposed and employed at the Weizmann Institute of Science in Rehovot, Israel [47] and is based on the difference in line-widths of two fine structure components of the same multiplet that undergo different splittings due the magnetic field. Experiments were conducted exploding fine Al wire using Cornell's Low Current Pulser 3 (LCP3), a pulsed power generator that initially produced a 10 kiloamp (kA) current pulse with a rise time of 500 nanoseconds [16]. It was later modified to produce up to 13kA with a 450ns rise time. Aluminum 1100 alloy wires were used, which are 99.9% Al. The wire length was 1.0cm, and the diameter ranged between 15[MICRO SIGN]m and 33[MICRO SIGN]m. The primary diagnostics included a high resolution grating spectrometer coupled to either a Kentech gated optical imager (GOI), Princeton Instruments PIMax3 gated intensified charge-coupled device (ICCD), or an Andor iStar ICCD. Additional diagnostics included pulser current, wire current, and load voltage monitors. The first set of experiments, with the GOI, were exploratory and meant to determine an initial electron temperature and electron density. Using these data it was concluded that the plasma parameters were conducive to the Zeeman Broadening technique, and the PIMax3 camera was borrowed from Princeton Instruments to create a diagnostic setup with resolution sufficient for studying the magnetic field. While the spectra were unsatisfactorily noisy, a magnetic field of B = 3.5T was fitted to a spectrum at a radius of 500[MICRO SIGN]m from the initial wire position at peak current. This result implies a high portion of the 10kA current remained within r [LESS-THAN OR EQUAL TO] 500[MICRO SIGN]m, even though the plasma had expanded beyond a 2mm radius. To gather more data with improved signal-to-noise ratios, a Shamrock 500i spectrometer and iStar camera were borrowed from Andor Technology. The spectra were analyzed to determine electron density ne and electron temperature T e over many radii throughout the evolution of single wire explosion. Over the entire single wire explosion, the ne ranged between 8 x 1016 cm[-]3 and 1.6 x 1018 cm[-]3 , while the T e was measured between 2eV and 4eV . The exploding wire plasma formed a hot less dense plasma shell surrounding a colder and denser core, both expanding outwards at a rate of ~ 3km/ s. In the Andor data set there also existed indications of measurable magnetic field that implied significant portions of current was flowing within r [LESS-THAN OR EQUAL TO] 500[MICRO SIGN]m, in agreement with the previous results.
机译:这篇论文为爆炸的单根铝线的可见发射光谱和等离子体参数提供了详细的确定,同时解决了一种新的光谱测量技术在稠密等离子体中测量磁场(B)的适用性,而以前的磁场测量是无法获得通过使用此新技术(以下称为“ Zeeman扩展”),可以在光谱中发现磁场,并进行了测量。塞曼增宽技术最早是在以色列雷霍沃特的魏兹曼科学研究所提出并采用的[47],它是基于同一多重峰的两个精细结构成分的线宽的差异,这些成分由于磁场而经历了不同的分裂。使用康奈尔(Cornell)的低电流脉冲发生器3(LCP3)进行了细铝丝的爆炸实验,该脉冲发生器最初产生了10千安培(kA)的电流脉冲,上升时间为500纳秒[16]。后来对其进行了修改,以在450ns的上升时间内产生高达13kA的电流。使用的铝1100合金线为99.9%Al。导线长度为1.0厘米,直径范围为15 [MICRO SIGN] m至33 [MICRO SIGN] m。主要诊断包括与Kentech门控光学成像仪(GOI),Princeton Instruments PIMax3门控增强电荷耦合器件(ICCD)或Andor iStar ICCD耦合的高分辨率光栅光谱仪。其他诊断包括脉冲电流,线电流和负载电压监视器。使用GOI进行的第一组实验是探索性的,旨在确定初始电子温度和电子密度。利用这些数据得出的结论是,等离子体参数有利于Zeeman展宽技术,并且从普林斯顿仪器公司借来了PIMax3摄像机,以创建具有足以研究磁场的分辨率的诊断装置。虽然光谱的噪声不令人满意,但在峰值电流处,从初始导线位置开始,半径为500 [MICRO SIGN] m的光谱拟合了B = 3.5T的磁场。该结果表明,即使等离子已经扩展到超过2mm的半径,大部分的10kA电流仍保持在r [小于或等于] 500 [MICRO SIGN] m之内。为了收集更多具有改进信噪比的数据,从Andor Technology借用了Shamrock 500i光谱仪和iStar相机。在单线爆炸的整个过程中,分析光谱以确定在多个半径上的电子密度ne和电子温度Te。在整个单线爆炸中,ne的范围在8 x 1016 cm [-] 3和1.6 x 1018 cm [-] 3之间,而T e的测量值在2eV和4eV之间。爆炸的金属丝等离子体形成了一个较热的密度较小的等离子体外壳,该外壳围绕着一个较冷且较密的核,两者均以〜3km / s的速度向外扩展。在Andor数据集中,还存在可测量磁场的迹象,这表明电流的大部分在r [小于或等于] 500 [MICRO SIGN] m之内流动,与先前的结果一致。

著录项

  • 作者

    Blesener Kate;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号