...
首页> 外文期刊>Current Smart Materials >Plasma Heavily Nitrogen-Doped Vertically Oriented Graphene Nanosheets (N-VOGNs) for High Volumetric Performance on-Chip Supercapacitors in Ionic Liquid
【24h】

Plasma Heavily Nitrogen-Doped Vertically Oriented Graphene Nanosheets (N-VOGNs) for High Volumetric Performance on-Chip Supercapacitors in Ionic Liquid

机译:等离子体在离子液体中为芯片高体积超级电容器的高体积性能呈垂直定向的石墨烯纳米片(N-Vogns)

获取原文
获取原文并翻译 | 示例
           

摘要

Background: The research of innovative nanostructured materials will be helpful in designing high performance supercapacitor devices in the near future. In this direction, graphene-based structures, such as Vertically Oriented Graphene Nanosheets (VOGNs), have emerged as promising architectures due to their interesting chemical, structural and electrochemical properties. One of the main strategies to enhance the performance of supercapacitive materials consists of the functionalization or modification of their surfaces by means of various approaches focused on doping or the deposition of electroactive material coatings/films among others. Particularly, in this study, the doping effect, by nitrogen plasma, on VOGNs was investigated as innovative electrodes for on-chip supercapacitors. Methods: Nitrogen-doped VOGNs (N-VOGNs) were characterised at morphological (SEM and TEM techniques), structural (XPS and Raman techniques) and electrochemical levels, respectively. Subsequently, the potential of such doped graphene nanostructure was evaluated in a symmetric supercapacitor device using a coin cell configuration. The properties of the supercapacitor were examined in terms of capacitance, energy and power density and lifetime. Results: A maximal N-content of 17% was achieved for VOGNs with a vertical length around 370 nm, through exposure to a N2 microwave-plasma in an electron cyclotron resonance (ECR)-CVD reactor. The deconvolution of N1s spectrum of N-VOGNs reflected the presence of three main peaks corresponding to pyrrolic (400.2 eV), pyridinic (399.0 eV) and graphitic (401.2 eV) nitrogen forms, demonstrating the incorporation of nitrogen into graphene structure. The doping effect reflected an important impact on the morphological (surface defects and reactions, porosity) and structural (conductivity) properties, which allowed to enhance greatly the capacitive properties compared to undoped VOGNs. Conclusion: N-VOGN based supercapacitors have demonstrated excellent capacitive properties such as high volumetric energy (28 mWh cm-3) and power (360 W cm-3) densities as well as an outstanding cycling stability (retention of 80% after 300 000 galvanostatic charge-discharge cycles). These results are very promising compared to the state-of-the art dealing with carbonaceous structure-based supercapacitors. Consequently, this study paves the way to explore the in-depth potential of such nanostructure in the development of innovative high performance supercapacitors.
机译:背景:创新的纳米结构材料的研究,将在不久的将来设计高性能超级电容器设备的帮助。在这个方向上,基于石墨烯的结构,例如垂直定向石墨烯纳米片(VOGNs),已成为有前途的结构,由于其化学有趣,结构和电化学性能。其中一个主要的策略来提高超级电容材料的性能由通过的各种方法的装置的官能化或它们的表面改性集中在掺杂或等电活性材料的涂层/膜的沉积。特别是,在本研究中,掺杂效果,通过氮等离子体,对被VOGNs研究作为芯片上的超级电容器的创新电极。方法:氮掺杂VOGNs(N-VOGNs)分别进行了表征在形态(SEM和TEM技术),结构(XPS和拉曼技术)和电化学水平。随后,该掺杂石墨烯纳米结构的电势在使用纽扣电池构成的对称超级电容器装置进行评价。超级电容器的特性的电容,能量和功率密度和寿命方面进行了检查。结果:17%的最大的N-含量用于与周围370nm的垂直长度,通过暴露于在电子回旋共振(ECR)-CVD反应器中的N 2的微波等离子体VOGNs实现。的N- VOGNs的N1s的光谱的去卷积的反射对应于吡咯(400.2 eV)的三个主要的峰,吡啶(399.0 eV)的和石墨(401.2 eV)的氮的形式存在,这表明氮掺入石墨烯结构。掺杂效果反映在形态学(表面缺陷和反应,孔隙率)和结构(导电性)性质,这允许大大提高电容特性相比未掺杂VOGNs产生重要影响。结论:N基VOGN超级电容器表现出了优异的电容性能,例如高的体积能量(28 mWh的CM-3)和功率(360 [W] cm -3)的密度,以及一个突出的循环稳定性(后300 000恒电流的80%的保留充电 - 放电循环)。这些结果非常乐观相比,国家的最先进的交易与碳结构为基础的超级电容器。因此,这项研究铺平了道路,探索创新的高性能超级电容器的开发,例如纳米结构的深度潜力的方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号