...
首页> 外文期刊>Current Climate Change Reports >Correlated Protein Environments Drive Quantum Coherence Lifetimes in Photosynthetic Pigment-Protein Complexes
【24h】

Correlated Protein Environments Drive Quantum Coherence Lifetimes in Photosynthetic Pigment-Protein Complexes

机译:相关蛋白质环境在光合色素蛋白复合物中推动量子相干寿命

获取原文
获取原文并翻译 | 示例

摘要

SummaryEarly reports of long-lived quantum beating signals in photosynthetic pigment-protein complexes were interpreted to suggest that electronic coherence benefits from protection by the protein, but many subsequent studies have suggested instead that vibrational or vibronic contributions are responsible for the observed signals. Here, we devised two 2D-spectroscopy methods to observe how each exciton is perturbed by its nuclear environment in a photosynthetic complex. The first approach simultaneously monitors each exciton's energy fluctuations over time to obtain its time-dependent electronic-nuclear interactions. The second method isolates evidence of coupled interexcitonic environmental motions. The techniques are validated with Nile Blue A and subsequently used on the Fenna-Matthews-Olson (FMO) complex. The FMO data reveal that each exciton experiences nearly identical spectral motion after excitation and that spectral motion of one excited exciton induces similar motion on unpopulated neighboring excitonic states. These synchronized and correlated spectral dynamics prolong coherences in the FMO complex after femtosecond excitation.Graphical AbstractDisplay OmittedHighlights?Method of observing spectral motions directly after femtosecond excitation?Observed synchronized fluctuations among electronic states in a protein complex?Observed correlated spectral motion between occupied and unoccupied excited statesThe Bigger PictureObservations of quantum coherence in photosynthetic complexes spawned a new field of quantum biology for the study of how biology exploits quantum dynamics. However, theoretical models have suggested that these signals may not arise from electronic dynamics but rather from simple molecular vibrations. The key question is whether different excited electronic states evolve in a correlated fashion after excitation.Here, we have developed two spectroscopic methods to provide experimental evidence that electronic states within a photosynthetic protein-pigment complex experience correlated fluctuations after excitation. Surprisingly, we found that the excitonic transitions in the Fenna-Matthews-Olson complex all undergo the same spectral motion after excitation despite having different degrees of delocalization and different local e
机译:<![cdata [ 摘要 光合色素蛋白复合物中的长寿命量子跳动信号的早期报告被解释为蛋白质的保护,但是许多后续研究表明,振动或振动贡献对观察到的信号负责。在这里,我们设计了两个2D光谱方法,以观察每个激子在光合复合物中的核环境中的扰动。第一种方法同时监控每个激子的能量波动随着时间的推移,以获得其时间依赖的电子核相互作用。第二种方法分离耦合意外兴奋环境运动的证据。这些技术用尼罗蓝色A验证,随后在FENNA-MATTHEWS-OLSON(FMO)复合物上使用。 FMO数据显示,在激发后,每个激子经历几乎相同的光谱运动,并且一个激发激发器的光谱运动在未灌注的相邻兴奋状态下引起类似的运动。这些同步和相关的光谱动态在飞秒励磁后的FMO复合物中延长了一致性。 图形抽象 显示省略 亮点 Memtosecond激励直接观察光谱动作的方法 观察到蛋白质复合体中电子状态的同步波动 < ce:para id =“p0020”视图=“全部”>观察到占用和未占用的激发态之间的相关频谱运动 更大的图片 光合复合物中量子相干性的观察结果产生了一种新的量子生物学领域生物学如何利用量子动态研究。然而,理论模型表明这些信号可能不会来自电子动态,而是来自简单的分子振动。关键问题是不同兴奋的电子状态是否以相关的方式在激励之后以相关的方式发展。 在这里,我们开发了两种光谱方法提供实验证据,即光合蛋白质 - 颜料复合体内的电子状态经验在激发后的相关波动。令人惊讶的是,我们发现在刺激后,在刺激的兴奋运动中,尽管具有不同程度的临床化和不同的本地e,但是在激励之后发生相同的光谱运动

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号