...
首页> 外文期刊>Computational particle mechanics >Large-scale numerical simulations of polydisperse particle flow in a silo
【24h】

Large-scale numerical simulations of polydisperse particle flow in a silo

机译:筒仓中多分散颗粒流量的大规模数值模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Very recently, we have examined experimentally and numerically the micro-mechanical details of monodisperse particle flows through an orifice placed at the bottom of a silo (Rubio-Largo et al. in Phys Rev Lett 114:238002, 2015). Our findings disentangled the paradoxical ideas associated to the free-fall arch concept, which has historically served to justify the dependence of the flow rate on the outlet size. In this work, we generalize those findings examining large-scale polydisperse particle flows in silos. In the range of studied apertures, both velocity and density profiles at the aperture are self-similar, and the obtained scaling functions confirm that the relevant scale of the problem is the size of the aperture. Moreover, we find that the contact stress monotonically decreases when the particles approach the exit and vanish at the outlet. The behavior of this magnitude is practically independent of the size of the orifice. However, the total and partial kinetic stress profiles suggest that the outlet size controls the propagation of the velocity fluctuations inside the silo. Examining this magnitude, we conclusively argue that indeed there is a well-defined transition region where the particle flow changes its nature. The general trend of the partial kinetic pressure profiles and the location of the transition region results the same for all particle types. We find that the partial kinetic stress is larger for bigger particles. However, the small particles carry a higher fraction of kinetic stress respect to their concentration, which suggest that the small particles have larger velocity fluctuations than the large ones and showing lower strength of correlation with the global flow. Our outcomes explain why the free-fall arch picture has served to describe the polydisperse flow rate in the discharge of silos.
机译:最近,我们已经通过实验和数值检查了单分散颗粒的微机械细节,通过放置在筒仓底部的孔口(Rubio-Largo等人。在Phys Rev Lett 114:238002,2015)中。我们的调查结果解开了与自由秋季拱概念相关的矛盾想法,该思想历史上历史上是为了证明流速对出口尺寸的依赖性。在这项工作中,我们概括了检查筒仓中的大规模多分散粒子流动的结果。在所研究的孔的范围内,孔径的速度和密度分布都是自相似的,并且获得的缩放功能确认了问题的相关规模是孔径的尺寸。此外,我们发现当颗粒接近出口并在出口处消失时,接触压力单调地减小。该幅度的行为实际上独立于孔口的大小。然而,总和部分动力学应力曲线表明出口尺寸控制筒仓内的速度波动的传播。检查这一幅度,我们得出结论方面认为,实际上存在明确定义的过渡区域,其中颗粒流动改变其性质。部分动力学压力曲线的一般趋势和过渡区域的位置对于所有粒子类型也相同。我们发现,对于更大的粒子,部分动力学应力更大。然而,小颗粒对其浓度具有更高的动力学应力部分,这表明小颗粒具有比大的速度波动更大,并且显示与全局流动的较低的相关强度。我们的结果解释了为什么自由落体拱形图片已经为筒仓排放的多分散流速提供了描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号