首页> 外文期刊>Combustion theory and modelling >Numerically accurate computational techniques for optimal estimator analyses of multi-parameter models
【24h】

Numerically accurate computational techniques for optimal estimator analyses of multi-parameter models

机译:用于多参数模型的最优估计器分析的数值准确的计算技术

获取原文
获取原文并翻译 | 示例
           

摘要

Modelling unclosed terms in partial differential equations typically involves two steps: First, a set of known quantities needs to be specified as input parameters for a model, and second, a specific functional form needs to be defined to model the unclosed terms by the input parameters. Both steps involve a certain modelling error, with the former known as the irreducible error and the latter referred to as the functional error. Typically, only the total modelling error, which is the sum of functional and irreducible error, is assessed, but the concept of the optimal estimator enables the separate analysis of the total and the irreducible errors, yielding a systematic modelling error decomposition. In this work, attention is paid to the techniques themselves required for the practical computation of irreducible errors. Typically, histograms are used for optimal estimator analyses, but this technique is found to add a non-negligible spurious contribution to the irreducible error if models with multiple input parameters are assessed. Thus, the error decomposition of an optimal estimator analysis becomes inaccurate, and misleading conclusions concerning modelling errors may be drawn. In this work, numerically accurate techniques for optimal estimator analyses are identified and a suitable evaluation of irreducible errors is presented. Four different computational techniques are considered: a histogram technique, artificial neural networks, multivariate adaptive regression splines, and an additive model based on a kernel method. For multiple input parameter models, only artificial neural networks and multivariate adaptive regression splines are found to yield satisfactorily accurate results. Beyond a certain number of input parameters, the assessment of models in an optimal estimator analysis even becomes practically infeasible if histograms are used. The optimal estimator analysis in this paper is applied to modelling the filtered soot intermittency in large eddy simu
机译:在部分微分方程中建模未扫描的术语通常涉及两个步骤:首先,需要将一组已知数量指定为模型的输入参数,而第二个,需要定义特定的功能形式以通过输入参数来定义特定的功能形式。通过输入参数来定义特定的功能形式。 。这两个步骤都涉及某种建模错误,前者称为不可缩小的误差,后者被称为功能误差。通常,仅评估作为功能和不可缩短的错误之和的总建模误差,但最佳估计器的概念可以单独分析总数和不可缩短的误差,产生系统的建模误差分解。在这项工作中,关注实际计算不可减少误差所需的技术本身。通常,直方图用于最佳估计器分析,但如果评估具有多个输入参数的模型,则发现该技术对不可缩小的错误增加了不可忽略的错误贡献。因此,最佳估计器分析的误差分解变得不准确,并且可以绘制有关建模误差的误导性结论。在这项工作中,鉴定了用于最佳估计分析的数值准确的技术,并提出了适当的不可缩回误差的评估。考虑了四种不同的计算技术:基于内核方法的直方图技术,人工神经网络,多变量自适应回归样条和添加剂模型。对于多个输入参数模型,发现仅发现人工神经网络和多变量自适应回归样条率来产生令人满意的准确结果。除了一定数量的输入参数之外,如果使用直方图,则在最佳估计器分析中的模型评估变得实际上是不可行的。本文的最佳估计分析应用于在大涡旋中建模过滤烟灰间歇性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号