...
首页> 外文期刊>Combustion theory and modelling >Degree centrality of combustion reaction networks for analysing and modelling combustion processes
【24h】

Degree centrality of combustion reaction networks for analysing and modelling combustion processes

机译:用于分析和建模燃烧过程的燃烧反应网络的程度中心

获取原文
获取原文并翻译 | 示例
           

摘要

Combustion research still needs more advanced fundamental understanding of combustion chemistry and dynamics from molecule scale to particle. The latter is also needed for soot and nanoparticles formation and combustion system control such as homogeneous charge compression ignition engine, and flame regimes and instability. The complex interactions between hundreds of species linked within thousands of reactions continue to be a challenge to analyse and model. The focus on this paper is to develop a method to facilitate the modelling and analysing of the detailed kinetics chemistry of fuels combustion. Through the use of combustion reaction networks (CRNs) analysis of degree centrality, principal species are identified during a combustion process by exploiting the introduced definition of principal species. A principal, central or the more active species of a combustion process, at a specific time step or cell of area/volume mesh, is the more tied up to other species in the CRN and so have the largest value of degree centrality. The accuracy of the dynamic identification of principal species, locally adapted to the thermochemical conditions at each time step/cell of the simulated combustion process, used by the employed directed relation graphs method of mechanisms reduction, is proved. The simulations were carried out using an adjusted dynamic adaptive chemistry approach of detailed chemistry implementing. It is demonstrated that an 'active' species in a combustion system would not necessary be considered as a part of important species set needed for its predictive simulations.
机译:燃烧研究仍然需要更先进的基础知识了解燃烧化学和来自分子规模的动力学。烟灰和纳米颗粒形成和燃烧系统控制也需要后者,例如均匀的电荷压缩点火发动机,以及火焰制度和不稳定性。数以千计在数千个反应中的数百种物种之间的复杂相互作用仍然是分析和模型的挑战。本文的重点是开发一种促进燃料燃烧详细动力学化学的建模和分析的方法。通过使用燃烧反应网络(CRNS)分析程度中心,通过利用所述主要物种的介绍定义,在燃烧过程中鉴定了主要物种。在面积/体积网格的特定时间步长或细胞中,燃烧过程的主要,中央或更活跃的物种是CRN中的其他物种越多,具有最大的程度中心的物种。证明了由采用的定向关系曲线方法使用的机构的模拟燃烧过程中的每次步骤/电池在每次步骤/电池的热化学条件的主体物质的动态识别的准确性。使用详细化学实施的调整动态自适应化学方法进行了模拟。据证明,燃烧系统中的“活性”物种将不必视为其预测模拟所需的重要种类所需的一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号