首页> 外文期刊>Combustion theory and modelling >Combustion of a rapidly initiated fully dense nanocomposite Al-CuO thermite powder
【24h】

Combustion of a rapidly initiated fully dense nanocomposite Al-CuO thermite powder

机译:快速引发的全致密纳米复合材料燃烧Al-Cuo热粉

获取原文
获取原文并翻译 | 示例
           

摘要

Very short burn times of nanocomposite, fully dense, stoichiometric 2Al center dot 3CuO thermite particles ignited by electro-static discharge (ESD) observed in earlier experiments are interpreted assuming that the reaction occurs heterogeneously at the Al-CuO interfaces while the initial nanostructure is preserved even after the melting points of various phases present in the particle are exceeded. The heating rate for the ESD-ignited particles is very high, reaching 10(9) K s(-1). The reaction model assumes that the rate of reaction is limited by transport of the reacting species across the growing layer of Al2O3 separating Al and CuO. The model includes the redox reaction steps considered earlier to describe ignition of 2Al center dot 3CuO nanocomposite thermites and adds steps expected at higher temperatures, when further polymorphic phase changes may occur in Al2O3. A realistic distribution of CuO inclusion sizes in the Al matrix is obtained from electron microscopy and used in the model. The model accounts for heat transfer of the nanocomposite particles with surrounding gas and radiative heat losses. It predicts reasonably well the burn times observed for such particles in experiments. It is also found that neglecting polymorphic phase changes in the growing Al2O3 layer and treating it as a single phase with the diffusion-limited growth rate similar to that of transition aluminas (activation energy of ca. 210 kJ mol(-1)) still leads to adequately predicted combustion temperatures and times for the nanocomposite particles rapidly heated by ESD. The model highlights the importance of preparing powders with fine CuO inclusion sizes in the nanocomposite particles necessary to complete the redox reaction; it is also found that the particle combustion temperatures may vary widely depending on their dimensions. Higher combustion temperatures generally lead to greater reaction rates and, respectively, to the more complete combustion.
机译:非常短的燃烧时间纳米复合材料,完全致密,化学计量的2Al中心点3Cuo热质颗粒通过在早期实验中观察到的电静电放电(ESD)被解释,假设反应在Al-CuO界面处发生异质,而初始纳米结构保存即使超过存在于颗粒中的各个相的熔点之后。 ESD点火颗粒的加热速率非常高,达到10(9)克(-1)。反应模型假设反应速率受到在分离Al和CuO的生长层上的反应物种的限制。该模型包括前面考虑的氧化还原反应步骤,以描述2al中心点3Cuo纳米复合材料的点火,并且当在Al 2 O 3中可能发生进一步的多态性相变时,在较高温度下增加期望的步骤。从电子显微镜中获得CUO包含尺寸的CuO包含尺寸的现实分布,并在模型中使用。该模型考虑了纳米复合粒子的传热,周围气体和辐射热损失。它可以合理地预测,在实验中对这些颗粒观察到的烧伤时间。还发现忽略生长的Al 2 O 3层中的多态相变,并用与过渡铝的扩散有限的生长速率相似的单个相(CA的活化能量,将其作为单相处理。210kJ摩尔(-1))仍然引导通过ESD快速加热的纳米复合颗粒的充分预测燃烧温度和时间。该模型突出了在完成氧化还原反应所必需的纳米复合颗粒中具有细CuO夹杂物尺寸的粉末制备粉末的重要性;还发现颗粒燃烧温度可能根据其尺寸而广泛变化。较高的燃烧温度通常导致更大的反应速率和更完整的燃烧。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号