首页> 外文期刊>Combustion theory and modelling >Investigation of flame propagation in autoignitive blends of n-heptane and methane fuel
【24h】

Investigation of flame propagation in autoignitive blends of n-heptane and methane fuel

机译:基于庚烷和甲烷燃料的自杀混合物对火焰繁殖的研究

获取原文
获取原文并翻译 | 示例
           

摘要

The effects of pre-ignition chemistry on laminar flame speed in methane/n-heptane fuel blends are investigated numerically, leading to flame speed modelling accounting for these effects. The laminar flame speeds of fuel blends are important input parameters for turbulent combustion models needed to support design of dual-fuel engines. At the autoignitive conditions found in engines, pre-ignition reactions cause the speed of the reaction front to increase. Fuels that exhibit two-stage ignition behaviour, such as n-heptane, also exhibit a two-stage increase in the speed of the reaction front as the reactant residence time increases. There is a corresponding reduction in the flame thickness until the residence time approaches the ignition delay time, whereupon the deflagrative scaling of flame thickness breaks down. The analysis shows that the increase in flame speed is due to distinct contributions of heat release, reactant consumption, and enhanced reactivity ahead of the flame. Addition of methane to n-heptane-air mixtures retards and reduces the first-stage increase in flame speed, in part due to dilution of the more-reactive n-heptane fuel, and in part due to consumption of radical species by the methane chemistry. The effect of methane/n-heptane fuel blending on flame speed is described adequately by a linear mixing rule. The effect of pre-ignition chemistry can then be modelled as a linear function of the progress variable ahead of the flame - accounting for heat release, reactant consumption, and enhanced reactivity ahead of the flame. The flame speed model accurately describes the variation of flame speed across the full range of methane/n-heptane blends at engine-relevant conditions, up to the deflagration/ignition transition.
机译:在数值上研究了在甲烷/正庚烷燃料共混物中对甲烷/正庚烷燃料混合物中的层状火焰速度的影响,导致对这些效果的火焰速度建模。燃料混合物的层状火焰速度是支持双燃料发动机设计所需的湍流燃烧模型的重要输入参数。在发动机中发现的自杀条件下,预点火反应导致反应前方的速度增加。随着反应物停留时间的增加,表现出两阶段点火行为的燃料,例如正庚烷,也表现出反应速度的两级增加。在停留时间接近点火延迟时间之前,火焰厚度有相应的降低,因此火焰厚度的脱模缩放断裂。分析表明,火焰速度的增加是由于热释放,反应物消耗和增强的火焰的反应性的贡献。向正庚烷 - 空气混合物中加入甲烷延迟并降低了火焰速度的第一阶段增加,部分原因是稀释的正庚烷燃料,部分原因是通过甲烷化学消耗自由基物种。通过线性混合规则充分描述甲烷/正庚烷燃料对火焰速度进行混合的影响。然后可以将预点火化学的效果作为在火焰前进展变量的线性函数的建模,用于占热释放,反应物消耗,并提高火焰的反应性。火焰速度模型精确地描述了发动机相关条件下全系列甲烷/正庚烷的火焰速度的变化,直至换挡/点火转变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号