首页> 外文期刊>Computers & Fluids >Numerical study on the dissipation of water waves over a viscous fluid-mud layer
【24h】

Numerical study on the dissipation of water waves over a viscous fluid-mud layer

机译:粘性流体泥层水波耗散数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

Direct simulations of the Navier-Stokes equations are performed to investigate the interaction between a nonlinear wave at the water surface and an interfacial wave at the fluid-mud layer below. A level-set method is employed to capture the air-water and water-mud interfaces. Despite the nonlinearity of the governing equations, the direct numerical simulation shows that the total wave-damping rate exhibits a remarkable consistency with the prediction of the linear theory. To reveal the underlying mechanism, we analyze the velocity and vortcity fields, energy transfer from the water to the mud, and energy dissipation. The detailed analysis of velocity and vorticity fields shows an appreciable nonlinear effect in the water but a relatively weak nonlinear effect in the fluid mud. The major pathway of transferring energy from the water to the mud is the pressure acting on the water-mud interface. The viscous dissipation of the energy also exhibits a local, significant nonlinear effect in the water. However, the excess and deficiency in the dissipation rate at different wave phases compared with the linear theory largely cancel each other, resulting in an overall wave-damping rate close to the prediction of the linear theory. Furthermore, the analysis of energy budgets elucidates a comprehensive picture of energy transport and dissipation in the wave-mud system. In the water, the horizontal motion first loses energy to the vertical motion through the pressure-strain correlation. The energy of the vertical motion is then transported downwards by the pressure and vertical advection. Across the water-mud interface, the vertical motion of the water transmits energy to the mud through the pressure work. In the mud, the energy of the vertical motion is transported downwards by the pressure and then redistributed to the horizontal motion through the pressure-strain correlation again. The energy of the horizontal motion is transported towards the mud bottom through the viscous diffusion and is finally dissipated. (C) 2017 Elsevier Ltd. All rights reserved.
机译:进行Navier-Stokes方程的直接模拟,以研究水面的非线性波与下面的流体泥层的界面波之间的相互作用。采用水平设定的方法来捕获空气水和水泥界面。尽管控制方程的非线性,但直接数值模拟表明,总波浪阻尼率与线性理论的预测表现出显着的一致性。为了揭示潜在的机制,我们分析了速度和涡流场,从水到泥浆的能量转移,节能。速度和涡流场的详细分析显示了水中的明显非线性效果,而是在流体泥浆中具有相对较弱的非线性效应。将能量从水转移到泥浆的主要途径是作用在水泥界面上的压力。能量的粘性耗散在水中也表现出局部显着的非线性效果。然而,与线性理论相比,不同波相的耗散速率的过量和缺陷在很大程度上彼此抵消,导致靠近线性理论的预测的整体波浪阻尼速率。此外,能源预算分析阐明了波泥系统中的能量运输和耗散的全面图像。在水中,水平运动首先通过压力应变相关来输向垂直运动的能量。然后通过压力和垂直平流向下运输垂直运动的能量。穿过水泥界面,水的垂直运动通过压力工作向泥浆传递能量。在泥浆中,垂直运动的能量通过压力向下传送,然后再次将水平运动重新分布到通过压力 - 应变相关性。水平运动的能量通过粘性扩散朝向泥浆底部输送,最终散发。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号