首页> 外文期刊>Computers & Fluids >Flow separation prevention around a NACA0012 profile through multivariable feedback controlled plasma actuators
【24h】

Flow separation prevention around a NACA0012 profile through multivariable feedback controlled plasma actuators

机译:通过多变量反馈控制等离子体致动器,NACA0012简介周围的流动分离防止

获取原文
获取原文并翻译 | 示例
           

摘要

In the present paper, the problem of controlling the unsteady flow separation over an aerofoil, using plasma actuators, is addressed. Although a plasma flow is essentially a two-phase flow, it has been proved that a local force term may be successfully considered within a flow solver in order to mimic the effect of a local acceleration (see [63]). By exploiting the Chimera Overlapping Grids technique to allow the inclusion of one or more actuators, accurate numerical simulations have been carried out with the in-house Finite Volume solver Xnavis. The effects of varying both number and position of the actuator/sensor pairs along the aerofoil are investigated by focusing on the dynamic control of the boundary layer separation. The capabilities of the proposed control strategy are also examined by showing how the practical flow separation control problem can be formulated as a simple output regulation problem, so that a simple control strategy may be used. Several numerical simulations of incompressible flows around a pitching NACA0012 at Reynolds Re = 20, 000 illustrate the effectiveness of the proposed approach, in the presence of time-varying angles of attack and complex non-linear dynamics, which are neglected in the control design. The present work extends the former paper of Broglia et al. [2], where the control algorithm was applied to the simple case of single input/single output regulation and implemented in a Finite Elements numerical code; in that work the boundary layer control of an airfoil at fixed angle of attack was addressed. In the present paper a multi input/multi output approach is theoretically developed and numerically implemented. Robust and fast flow reattachment is achieved, along with both stabilisation and increase/reduction of the lift/drag, respectively. A major advantage of the presented method is that the chosen controlled outputs can be easily measured in realistic applications. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在本文中,解决了使用等离子体致动器控制在翼型上的不稳定流分离的问题。尽管等离子体流基本上是两相流,但已经证明了局部力术语可以在流动求解器内成功考虑,以便模拟局部加速的效果(参见[63])。通过利用嵌合体重叠的网格技术以允许包含一个或多个致动器,已经通过内部有限音量求解器XNavis进行了准确的数值模拟。通过专注于边界层分离的动态控制,研究了改变致动器/传感器对沿着航空膜的两个数量和位置的影响。还通过示出如何将实际流动分离控制问题标明作为简单的输出调节问题来检查所提出的控制策略的能力,从而可以使用简单的控制策略。在Reynolds Re = 20,000处的俯仰Naca0012周围的若干数值模拟ZoneNACA0012呈现出所提出的方法的有效性,在存在于控制设计中被忽略的时变的攻击角度和复杂的非线性动态的存在。本作延伸了Broglia等人的前纸。 [2],其中控制算法应用于单个输入/单输出调节的简单情况并在有限元数值代码中实现;在该工作中,解决了固定攻角处的翼型的边界层控制。在本文中,一种多输入/多输出方法是理论上的开发和数值实现的。实现了鲁棒和快速的流量,以及稳定性和提高/降低的升力/阻力。所提出的方法的主要优点是所选择的受控输出可以在现实应用中轻松测量。 (c)2019年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号