...
首页> 外文期刊>Computational Materials Science >A coarse-graining approach for modeling nonlinear mechanical behavior of FCC nano-crystals
【24h】

A coarse-graining approach for modeling nonlinear mechanical behavior of FCC nano-crystals

机译:FCC纳米晶体非线性力学行为建模的粗磨探方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The ever-increasing growth of nano-technology has elevated the necessity for development of new computational methods that are capable of evaluating large systems at nano-scale. The existing techniques, such as the molecular dynamics, lack the ability to simulate large systems of practical size and time scales. In order to provide a realistic simulation of large models, the multi-scale methods such as coarse-graining, have therefore become very popular. The coarse-grained models have mostly been used to simulate large biomolecules, such as proteins, lipids, DNA and polymers. In this paper, the Iterative Boltzmann Inversion (IBI) coarse-graining technique is applied to FCC nano-crystals; the successful application of this technique enables the simulation of large metallic models, the simulation of which using conventional molecular dynamics methods would be time and energy consuming. The application process consists of two steps. In the first step, the IBI method is employed to develop an interatomic potential for the all-atom system. The efficiency of generated potential is, then, compared with EAM potential. Once the efficiency of IBI method is established in producing a proper potential to simulate all-atom behavior, the mechanical behavior of the coarse-grained system is compared, in the second step, with the behavior of all-atom system. Finally, several numerical simulations are provided to investigate the efficiency of proposed coarse-graining technique in predicting the nonlinear mechanical behavior of FCC nano-crystals.
机译:纳米技术的不断增长的增长升高了开发能够在纳米级评估大型系统的新计算方法的必要性。现有技术,例如分子动力学,缺乏模拟实际规模和时间尺度的大型系统的能力。为了提供大型模型的逼真模拟,诸如粗粒的多尺度方法变得非常流行。粗粒模型主要用于模拟大型生物分子,例如蛋白质,脂质,DNA和聚合物。在本文中,迭代玻璃晶醇反转(IBI)粗晶体化技术应用于FCC纳米晶体;这种技术的成功应用能够进行大型金属模型的模拟,使用常规分子动力学方法的模拟将是时间和能量。应用程序流程由两个步骤组成。在第一步中,采用IBI方法来开发全原子系统的内部潜力。然后,与EAM电位相比,产生的电位的效率是。一旦建立了IBI方法的效率,在产生了模拟了全原子行为的适当电位时,将在第二步中比较粗粒系统的机械行为,并在第二步中具有全原子系统的行为。最后,提供了几种数值模拟,以研究提出的粗粒技术在预测FCC纳米晶体的非线性力学行为方面的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号