首页> 外文期刊>Computational Materials Science >Computational study on microstructural optimization of multiferroic magnetoelectric composites
【24h】

Computational study on microstructural optimization of multiferroic magnetoelectric composites

机译:多体磁电复合材料微观结构优化的计算研究

获取原文
获取原文并翻译 | 示例
           

摘要

A multiscale optimization is presented for multiferroic composite materials to enhance magnetoelectric (ME) effect. The challenge of this study is to discover innovative microstructures beyond the conventional laminated structure which is the best of existing materials. The asymptotic homogenization theory was employed for scale bridging between the macrostructure and the microstructure. The homogenized ME coefficient of macrostructure was set to an objective function. The phase configuration and polarization directions in the microstructure were utilized as design variables. The computation yielded to an optimized microstructure, and found its macro homogenized ME coefficient is 21% larger than the conventional structure. The optimized microstructure consists of four rectangle regions and they are periodically repeated. Ferromagnetic and ferroelectric phases are alternately lined in each region and their polarization directions are determined by the special stated Euler angles. The computation successfully established that the optimal microstructure exists beyond the conventional layered structure. The findings open new avenues for enhancing physical properties of functional materials, and are expected to expand to digital fabrication by 3D printing.
机译:提供多尺度优化,用于增强磁电(ME)效应。本研究的挑战是发现超出传统层压结构的创新微观结构,这是最好的材料。渐近均质化理论用于宏观结构与微观结构之间的横向桥接。均质化的ME宏观结构系数设定为目标函数。微结构中的相位配置和偏振方向被用作设计变量。计算产生了优化的微观结构,并且发现其宏观均质ME系数比传统结构大21%。优化的微结构由四个矩形区域组成,它们是周期性地重复的。在每个区域中交替衬里的铁磁和铁电相,它们的偏振方向由特殊的欧拉角度确定。计算成功地确定了超出传统分层结构的最佳微结构。该研究结果开辟了用于增强功能材料物理性质的新途径,预计通过3D打印扩展到数字制造。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号