首页> 外文期刊>Computers in Industry >A comparison of fog and cloud computing cyber-physical interfaces for Industry 4.0 real-time embedded machine learning engineering applications
【24h】

A comparison of fog and cloud computing cyber-physical interfaces for Industry 4.0 real-time embedded machine learning engineering applications

机译:雾和云计算网络工业界面界面的比较4.0实时嵌入式机器学习工程应用

获取原文
获取原文并翻译 | 示例
           

摘要

Industrial cyber-physical systems are the primary enabling technology for Industry 4.0, which combine legacy industrial and control engineering, with emerging technology paradigms (e.g. big data, internetof-things, artificial intelligence, and machine learning), to derive self-aware and self-configuring factories capable of delivering major production innovations. However, the technologies and architectures needed to connect and extend physical factory operations to the cyber world have not been fully resolved. Although cloud computing and service-oriented architectures demonstrate strong adoption, such implementations are commonly produced using information technology perspectives, which can overlook engineering, control and Industry 4.0 design concerns relating to real-time performance, reliability or resilience. Hence, this research compares the latency and reliability performance of cyber-physical interfaces implemented using traditional cloud computing (i.e. centralised), and emerging fog computing (i.e. decentralised) paradigms, to deliver real-time embedded machine learning engineering applications for Industry 4.0. The findings highlight that despite the cloud's highly scalable processing capacity, the fog's decentralised, localised and autonomous topology may provide greater consistency, reliability, privacy and security for Industry 4.0 engineering applications, with the difference in observed maximum latency ranging from 67.7%-99.4%. In addition, communication failures rates highlighted differences in both consistency and reliability, with the fog interface successfully responding to 900,000 communication requests (i.e. 0% failure rate), and the cloud interface recording failure rates of 0.11%, 1.42%, and 6.6% under varying levels of stress. (C) 2019 Elsevier B.V. All rights reserved.
机译:工业网络物理系统是工业4.0的初级促进技术,它结合了遗产工业和控制工程,具有新兴技术范式(例如大数据,InternetOf-Things,人工智能和机器学习),从而获得自我意识和自我 - 能够提供重大生产创新的工厂。但是,连接和扩展到网络世界的物理工厂操作所需的技术和架构尚未完全解决。虽然云计算和面向服务的架构表现出强烈采用,但这些实现通常使用信息技术观点来生产,这些视角可能会忽略与实时性能,可靠性或弹性有关的工程,控制和行业4.0设计问题。因此,该研究比较了使用传统云计算(即集中)实现的网络物理接口的延迟和可靠性性能,以及新兴雾计算(即分散的)范式,为行业4.0提供实时嵌入式机器学习工程应用。调查结果强调,尽管云的高度可扩展性处理能力,但雾的分散,局部和自主拓扑结构可以为行业4.0工程应用提供更大的一致性,可靠性,隐私和安全性,观察到的最大延迟范围从67.7%-99.4%的差异。此外,通信失败率突出显示了一致性和可靠性的差异,雾界面成功响应了900,000个通信请求(即0%故障率),云接口记录失败率为0.11%,1.42%和6.6%不同程度的压力。 (c)2019年Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号