...
首页> 外文期刊>Computer physics communications >A new highly scalable, high-order accurate framework for variable-density flows: Application to non-Boussinesq gravity currents
【24h】

A new highly scalable, high-order accurate framework for variable-density flows: Application to non-Boussinesq gravity currents

机译:一种新的高度可扩展,高阶准确的可变密度流动框架:应用于非Boussinesq重力电流

获取原文
获取原文并翻译 | 示例
           

摘要

This paper introduces a new code "QuasIncompact3D" for solving the variable-density Navier-Stokes equations in the low-Mach number limit. It is derived from the Incompact3D framework which is designed for incompressible flows (Laizet and Lamballais, 2009). QuasIncompact3D is based on high-order accurate compact finite-differences (Lele, 1992), an efficient 2D domain decomposition (Laizet and Li, 2011) and a spectral Poisson solver. The first half of the paper focuses on introducing the low-Mach number governing equations, the numerical methods and the algorithm employed by QuasIncompact3D to solve them. Two approaches to forming the pressure-Poisson equation are presented: one based on an extrapolation that is efficient but limited to low density ratios and another one using an iterative approach suitable for higher density ratios. The scalability of QuasIncompact3D is demonstrated on several TIER-1/0 supercomputers using both approaches, showing good scaling up to 65k cores. Validations for incompressible and variable-density low-Mach number flows using the Taylor-Green vortex and a non-isothermal mixing layer, respectively, as test cases are then presented, followed by simulations of non-Boussinesq gravity currents in two- and three-dimensions. To the authors' knowledge this is the first investigation of 3D non-Boussinesq gravity currents by means of Direct Numerical Simulation over a relatively long time evolution. It is found that 2D and 3D simulations of gravity currents show differences in the locations of the fronts, specifically that the fronts travel faster in three dimensions, but that it only becomes apparent after the initial stages. Our results also show that the difference in terms of front location decreases the further the flow is from Boussinesq conditions. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文介绍了一种新的代码“QuasinCompact3D”,用于求解低马赫数限制的可变密度Navier-Stokes方程。它源自无兼任的3D框架,该框架专为不可压缩的流量而设计(Laizet和Lamballais,2009)。 QuasinCompact3D基于高阶精确的紧凑型有限差异(LELE,1992),有效的2D域分解(LEIZET和LI,2011)和光谱泊松求解器。本文的前半部分侧重于引入QuasinCompact3D解决方程的低马赫编号,数值方法和算法来解决它们。提出了两种形成压力 - 泊松方程的方法:基于外推,其有效但限于低密度比,并且使用适合于更高密度比的迭代方法的另一个。 QuasinCompact3d的可扩展性在使用两种方法的几级-1 / 0超级计算机上证明,显示出最高可达65K核的良好缩放。不可压缩和可变密度低马赫数的验证分别使用泰勒 - 绿色涡流和非等温混合层流动,因为然后呈现测试案例,然后模拟两和三个 - 方面。对于作者的知识,这是通过在相对较长的时间的进化中通过直接数值模拟进行3D非Boussinesq重力电流的第一次调查。发现重力电流的2D和3D模拟显示了前部的位置的差异,特别是前方的三维行进速度更快,但是它在初始阶段之后只变得显而易见。我们的结果还表明,前部位置方面的差异降低了流量来自BoussinesQ条件。 (c)2019年Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号